Control y Análisis de Estabilidad de un Convertidor DC-DC para Microchips

Authors: Carolina Albea, Carlos Canudas de Wit & Francisco Gordillo
MOTIVATION

SYSTEM

DESIGN OF CONTROL LAWS

STABILITY ANALYSIS

DISCRETIZATION AND COMPARISON

CONCLUSIONS
OUTLOOK

- MOTIVATION
- SYSTEM
- DESIGN OF CONTROL LAWS
- STABILITY ANALYSIS
- DISCRETIZATION AND COMPARISON
- CONCLUSIONS
ARAVIS Project sponsored by Minalogic pole

Currently technology: 90nm, 65nm and, even, 45nm cannot be applied any more to the technology of 32nm.

WHY???

Technology variability phenomenon
Three technology keys:

- Re-configurable structure w.r.t. applicability requirements
- Asynchronous technique.
- Dynamic management of the power consumption and activity
MOTIVATION

STABILITY OF THE CLOSED-LOOP SYSTEM

LDVS
Local Dynamic Voltage Scaling Architecture

GALS
Globally Asynchronous and Locally Synchronous Systems

Vdd-Hopping\(^{(1)}\)

PSS + Two voltage sources

CONTROL !!!!!

Objectives in VLSI:
1. High energy-efficiency.
2. Current peaks limits.
3. Reduction of transient times.
4. Robustness
5. Simple implementation

(1) S. Miermot et al. LECTURE NOTES IN COMPUTER SCIENCE
MOTIVATION
SYSTEM
DESIGN OF CONTROL LAWS
STABILITY ANALYSIS
DISCRETIZATION AND COMPARISON
CONCLUSIONS
Vdd-Hopping DC-DC Converter:

System control model

where \[R(u_k) = \frac{R}{u} \]
and \[
\begin{align*}
u &= \sum_{i=1}^{n} M_i \\
R &= R_1 = R_2 = \cdots = R_n
\end{align*}
\]
DC-DC converter circuit

Converter model

\[
\dot{v}_c = -\beta v_c + b(V_h - v_c)u_k - \delta
\]

(1) \[
\begin{cases}
\beta > 0 \\
\delta, b > 0 \text{ and cte}
\end{cases}
\]

Theorem: Consider the following:
1. \(v_c, v_r\) and \(u_k\) are such that \(v_c, u_k \in F \subseteq R^+\), for all \(t\), where \(F\) is a bounded subset of positive real numbers, and \(v_r\) is a bounded reference,
2. \(b > 0\) and constant,
3. \(r \leq r_0\), with \(r_0 > 0\),
then System (1) is globally stable in the sense that for all initial condition \(e(0)\), the solutions \(e(t)\) tend to a ball of radius \(r_0\).

Error equation

\[
\dot{e} = -(\beta + bu_k)e + \beta v_r + bu_k (v_r - V_h) + \delta
\]

where \(e = v_r - v_c\)
OUTLOOK

- MOTIVATION
- SYSTEM
- DESIGN OF CONTROL LAWS
- STABILITY ANALYSIS
- DISCRETIZATION AND COMPARISON
- CONCLUSIONS
DESIGN OF CONTROL LAWS

ROBUST CONTROL

\[u_k = \text{sat}^N_1 \text{round} \left(K_1 e + K_2 \sigma \right) \]

\[
\begin{align*}
K_1 &= \frac{2\xi \omega_n - (u_{kl}b + \beta_l)}{b(V_{high} - V_{low})} \\
K_2 &= \frac{\omega_n^2}{b(V_{high} - V_{low})}
\end{align*}
\]

being \(\beta_l = \min(\beta) \). Note that \(K_2 > 0 \)

Lemma 1 If \(\xi \) is chosen such that

\[\xi \in \left[\frac{u_{kl}b + \beta_l}{2\omega_n}, \frac{u_{kl}b + \beta_l}{2\omega_n} + \frac{\omega_n^2 b(V_h - V_{low})}{b^2 \bar{u}_k^M(V_h - V_{low})k + 2\omega_n^2} \right] \]

then \(K_1 > 0 \) and \(K_1(b\bar{u}_k^M + 2K_2) - K_2 < 0 \).

Being \(\bar{u}_k^M \) the maximal equilibrium value of \(u_k \).

Note, that \(\frac{\omega_n^2 b(V_h - V_{low})}{b^2 \bar{u}_k^M(V_h - V_{low})k + 2\omega_n^2} > 0 \).
ROBUST CONTROL

\[u_k = \text{sat}_1^N \, \text{round} \left(K_1 e + K_2 \sigma \right) \]

WITH STEP REFERENCE SIGNAL

BEWARE!!!!!!
This current peak can damage the physical system.
MANAGING CURRENT PEAKS

Maximal current peaks constraint:

\[0 < \Delta I \leq |\Delta I_{\text{max}}| \] considering \(v_c \) is continuous

\[-\Delta I_{\text{max}} \leq \frac{V_{\text{high}} - v_c}{R_0} \Delta u_k \leq \Delta I_{\text{max}} \]

This constraint can be introduced:

\[u_{k-1} + \Delta u_k^M = u_{k-1} + \frac{R_0}{V_h - v_c} \Delta I_{\text{max}} = u_{k-1} + \alpha_k^M \]

\[u_{k-1} + \Delta u_k^m = u_{k-1} - \frac{R_0}{V_h - v_c} \Delta I_{\text{max}} = u_{k-1} + \alpha_k^m \]

Thus, the controller will be

\[u_k = \text{sat}^N \left(\text{round} \left(\text{sat}^{u_{k-1} + \alpha_k^M} \right) \right) \]

\[R_1 e + K_2 \sigma \]
ROBUST CONTROL WITH CURRENT PEAK CONSTRAINTS

$$u_k = \text{sat}_1^N \left\lfloor \text{round} \left(\frac{\text{sat}_{u_{k-1}}^{\alpha_k^M}}{m} \right) \frac{\text{e}}{K_1} + K_2 \sigma \right\rfloor$$
MOTIVATION
SYSTEM
DESIGN OF CONTROL LAWS
STABILITY ANALYSIS
DISCRETIZATION AND COMPARISON
CONCLUSIONS
Theorem 1: System \(\dot{e} = -(\beta + bu_k)e + \beta v_r + bu_k(v_r - V_h) + \delta \) with the controller \(u_k = \text{sat}^N_1 \) round \(K_1 e + K_2 \sigma \) is locally asymptotically stable for all initial condition \(e(0) \), if \(K_1 \) and \(K_2 \) are positives.

Proof: Let us rewrite error equation

\[
\dot{e} = -f(\bar{u}_k + w_k)e + b(v_r - V_h)(w_k + \bar{u}_k) + K_2 v_c + \delta
\]

where

\[
\begin{cases}
 w_k = u_k - \bar{u}_k \\
 \bar{u}_k = \frac{\beta \bar{v}_c + \delta}{b(V_h - v_r)} = K_2 \bar{\sigma}
\end{cases}
\]

being \(\bar{v}_c, \bar{\sigma} \) equilibrium values.
Candidate Lyapunov function:

\[V = \frac{e^2}{2b(V_h - v_r)} + \frac{(\sigma - \bar{\sigma})^2}{2} K_2 \]

Derivating and adding \(\pm e^2 \bar{K}_1 \)

\[\dot{V} = -\left(\frac{f(u_k) + K_2}{b(V_h - v_r)} + K_1 \right) e^2 \leq 0 \quad \text{where } K_1, K_2 \text{ are positives.} \]

The stability is established by LaSalle’s invariant principle, since the maximum invariant set with \(\dot{V} = 0 \) is the single point \((e = 0, \sigma = \bar{\sigma}) \).
Theorem 2: System \(\dot{e} = - (\beta + bu_k)e + \beta v_r + bu_k (v_r - V_h) + \delta \) with the controller \(u_k = sat_1^N \) round \(at^{u_k_{k-1} + a_k^M} \) \(K_1 e + K_2 \sigma \) is locally asymptotically stable for all initial condition \(e(0) \), if \(K_1 \) and \(K_2 \) are positives.

Proof:

Remark: The equilibriums of the system are in Region I.

\[\bar{u}_k = sat_1^N \left\{ round \left(sat_{K_2 \bar{\sigma} + \frac{R_0}{V_h - v_c} \Delta I_{\text{max}}} \frac{R_0}{V_h - v_c} \Delta I_{\text{max}} \right) \right\} \]
Lemma 2: System \(\dot{e} = -(\beta + bu_k)e + \beta v_r + bu_k(v_r - V_h) + \delta \) with controller \(u_k = \text{sat}_1^N \text{round}(u_{k-1} + \alpha_k^M) \text{sat}_1^M e + K_2 \bar{\sigma} \) saturated in the upper or lower current peak limit for all initial condition \(e(0) \) converges to the non-saturation region in a finite time, if
\[K_1(\bar{u}_k^M + 2\beta(v_c)) - K_2 < 0 \]

Proof: \(\dot{u}_k \rightarrow \alpha_k^M \)

REGION II

Property: In Region II the system fulfills

- \(\dot{u}_k > \alpha_k^M(e) > 0 \)
- \(\ddot{u}_k(e) \leq \varepsilon < 0 \) being \(\varepsilon = -bK_1R_0\Delta I_{\text{max}} = \text{cte} \)
- \(e > 0 \)

Remark: \(\dot{u}_k \) is monotonous decreasing, with derivative bounded away from zero, and hence it will reach the equilibriums in finite time.
Candidate Lyapunov function

\[W = \dot{u}_k - \alpha_k^M (e) = K_1 \dot{e} + K_2 e - \alpha_k^M (e) > 0 \]

Derivating and substituting the second derivative error equation:

\[\dot{W} = -b(V_h - v_c)K_1 \dot{u}_k + \left(-K_1 (bu_k + 2K_2) + K_2 + \frac{\alpha_k^M (e)}{V_h - v_r + e} \right) \dot{e} \]

\[\leq -b(V_h - v_c)K_1 \dot{u}_k + \left(K_1 (bu_k + 2K_2) - K_2 - \frac{\alpha_k^M (e)}{V_h - v_r + e} \right) \frac{K_2 e}{K_1} \]

\[< 0 \]

\[\dot{u}_k = K_1 \dot{e} + K_2 e > 0 \]

\[-\dot{e} < \frac{K_2 e}{K_1} \]

\[\bar{u}_k > u_k \]

\[K_1 (b \bar{u}_k^M + 2K_2) - K_2 < 0 \]
By La Salle’s invariance principle, we can conclude the statement of the Theorem, since we have found an invariant set Ω (Region I), such that $\dot{V}(e, \sigma) = 0 \quad \forall (e, \sigma) \in \Omega$ containing the desired point. Furthermore, Lemma 2 implies that the domain of attraction is not restricted to the invariant set Ω, but it is also limited by the saturation limits and some appropriate Lyapunov levels.

Proof similar to REGION II
OUTLOOK

- MOTIVATION
- SYSTEM
- DESIGN OF CONTROL LAWS
- STABILITY ANALYSIS
- DISCRETIZATION AND COMPARISON
- CONCLUSIONS
CONTROL WITH CURRENT PEAK CONSTRAINTS

\[u_k = \text{sat}_1^N \left\{ \text{round} \left(\text{sat}_{u_{k-1}+\alpha_k^m}^u \right) \right\} R_1 e + K_2 \sigma \]

\[\left\{ \begin{array}{l}
 K_1 = K_1 - \frac{K_2}{2} \\
 K_2 = K_2 T
\end{array} \right. \]

\[u_k = \text{sat}_1^N \sigma_{k-1}^l + \text{round} \left(\text{sat}_{\alpha_k^m}^u \right) \left(R_1 (e_k - e_{k-1}) + K_2 e_k \right) \]

Control patent pending under the name ENergy-AwaRe Control (ENARC)
COMPARISON

PREVIOUS CONTROL LAW [S. Miermot et al. LNCS]

\[u_k = u_{k-1} + \text{sign}(e) \]

ENARC

![Graphs showing comparison between previous control law and ENARC](image)
COMPARISON

TOTAL ENERGY DISSIPATED

<table>
<thead>
<tr>
<th>Controller</th>
<th>Energy (J)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intuitive controller</td>
<td>7.2 µJ</td>
</tr>
<tr>
<td>ENARC</td>
<td>0.3 µJ</td>
</tr>
</tbody>
</table>

96%
OUTLOOK

- MOTIVATION
- SYSTEM
- DESIGN OF CONTROL LAWS
- STABILITY ANALYSIS
- DISCRETIZATION AND COMPARISON
- CONCLUSIONS
A control law is proposed for the Vdd-Hopping mechanism in order to:

- Dissipated energy is reduced
- Current peaks are limited
- Transient time are reduced
- Simple implementation
- and robust control.

Closed-loop system stability is analyzed in continuous time.

A discretization of this controller is done.

A comparison with a controller presented in [S. Miermot et al. *LNCS*] is done.
Gracias!!!

Dudas, comentarios??