Adaptive rejection of unknown disturbances

Application to active vibration control

I.D. Landau, A. Constantinescu
Laboratoire d’Automatique de Grenoble(INPG/CNRS), France

Sevilla
October 2004

I.D. Landau, A. Constantinescu: Adaptive rejection of unknown disturbances
Outline

- Introduction
- Rejection of unknown stationary disturbances. *Basic facts*
- Rejection of unknown narrow band disturbances in active vibration control. *Real-time results*
- Adaptive control solutions (indirect/direct)
- Further experimental results
 (*comparison direct/indirect adaptive control*)
- Conclusions
Unknown disturbance rejection – classical solution

Disadvantages:

- requires the use of an additional transducer
- difficult choice of the location of the transducer
- adaptation of many parameters
Rejection of unknown disturbances

- **Assumption:** Plant model almost constant and known (obtained by system identification)
- **Problem:** Attenuation of unknown and/or variable stationary disturbances *without using an additional measurement*
- **Solution:** Adaptive feedback control
 - Estimate the model of the disturbance
 - Use the internal model principle
 - Use of the Youla parameterization (direct adaptive control)

A class of applications: suppression of unknown vibrations
(active vibration control)

Attention:
The area is “dominated “ by adaptive signal processing solutions
(Widrow’s adaptive noise cancellation) which require an additional transducer

Most surprising: there is an elegant “direct adaptive control” solution

Remainder: Models of stationary disturbances have poles on the unit circle
Internal Model Principle

For asymptotic rejection of a disturbance the controller should incorporate the model for the disturbance

\[\delta \quad \text{Disturbance Model} \quad \text{Disturbance} \]

Remember:

- Step disturbance model: \[\frac{1}{s} \text{ or } \frac{1}{1-q^{-1}} \]

The controller should incorporate an « integrator » (which is the model of the disturbance)
Indirect adaptive control

Two-steps methodology:

1. Estimation of the disturbance model, $D_p(q^{-1})$

2. Compute the controller using the « internal model principle » (the controller contains the model of the disturbance)

It can be time consuming (if the plant model B/A is of large dimension)

I.D. Landau, A. Constantinescu: Adaptive rejection of unknown disturbances
Direct adaptive rejection of unknown disturbances

- One directly adapts a filter which is part of the controller.
- It tunes the « internal model » inside the controller
- Does not changes the poles of the closed loop (Y-K param.)

Model = Plant
\[w = Ap \]
Direct adaptive rejection of unknown disturbances

Equivalent representation of the scheme (case $A = \text{as.stable}$)
Rejection of unknown narrow band disturbances in active vibration control
The Active Suspension System

Objective:
- Reject the effect of unknown and variable narrow band disturbances
- Do not use an additional measurement

Two paths:
- Primary
- Secondary (double differentiator)

\[T_s = 1.25 \text{ ms} \]
The Active Suspension

Active suspension
Residual force (acceleration) measurement
Primary force (acceleration) (the shaker)

I.D. Landau, A. Constantinescu: Adaptive rejection of unknown disturbances
Active Suspension

Frequency Characteristics of the Identified Models

Primary path

Secondary path

\[n_A = 14 \ ; \ n_B = 16 \ ; \ d = 0 \]

Further details can be obtained from: http://iawww.epfl.ch/News/EJC_Benchmark/

I.D. Landau, A. Constantinescu: Adaptive rejection of unknown disturbances
Direct Adaptive Control: disturbance rejection

Disturbance: Chirp

Open loop

Closed loop

Initialization of the adaptive controller

I.D. Landau, A. Constantinescu: Adaptive rejection of unknown disturbances
Time Domain Results

Adaptive Operation

Direct adaptive control

Commande adaptative directe en adaptatif
Initialization of the adaptive controller

Direct Adaptive Control

Output

Input

Adaptation transient

Adaptation transient

I.D. Landau, A. Constantinescu: Adaptive rejection of unknown disturbances
Notations

\begin{align*}
G(q^{-1}) &= \frac{q^{-d}B(q^{-1})}{A(q^{-1})} \\
K(q^{-1}) &= \frac{R(q^{-1})}{S(q^{-1})} = \frac{R'(q^{-1})H_S(q^{-1})}{S'(q^{-1})H_R(q^{-1})}
\end{align*}

Output Sensitivity function:

\[S_{yp}(z^{-1}) = \frac{A(z^{-1})S'(z^{-1})H_S(z^{-1})}{P(z^{-1})} \]

Closed loop poles:

\[P(z^{-1}) = A(z^{-1})S(z^{-1}) + z^{-d}B(z^{-1})R(z^{-1}) \]

The gain of \(S_{yp} \) is zero at the frequencies where \(S_{yp}(e^{j\omega}) = 0 \) (perfect attenuation of a disturbance at this frequency)
Disturbance model

Deterministic framework

\[p(t) = \frac{N_p(q^{-1})}{D_p(q^{-1})} \cdot \delta(t) : \text{deterministic disturbance} \]

\[D_p \rightarrow \text{poles on the unit circle}; d(t) = \text{Dirac} \]

Stochastic framework

\[p(t) = \frac{N_p(q^{-1})}{D_p(q^{-1})} \cdot e(t) : \text{stochastic disturbance} \]

\[D_p \rightarrow \text{poles on the unit circle}; e(t) = \text{Gaussian white noise sequence } (0, \sigma) \]
Closed loop system. Notations

\[p(t) = \frac{N_p(q^{-1})}{D_p(q^{-1})} \cdot \delta(t) : \text{deterministic disturbance} \]

\[D_p \rightarrow \text{poles on the unit circle; } d(t) = \text{Dirac} \]

Controller:

\[R(q^{-1}) = R'(q^{-1}) \cdot H_R(q^{-1}); \]
\[S(q^{-1}) = S'(q^{-1}) \cdot H_S(q^{-1}). \]

Internal model principle: \(H_S(z^{-1}) = D_p(z^{-1}) \)

Output: \(y(t) = \frac{A(q^{-1})S(q^{-1})}{P(q^{-1})} \cdot p(t) = S_{yp}(q^{-1}) \cdot p(t) \)
\[y(t) = \frac{A(q^{-1})H_S(q^{-1})S'(q^{-1})N_p(q^{-1})}{P(q^{-1})} \cdot \frac{1}{D_p(q^{-1})} \cdot \delta(t) \]

CL poles: \(P(q^{-1}) = A(q^{-1})S(q^{-1}) + z^{-d} B(q^{-1})R(q^{-1}) \)

I.D. Landau, A. Constantinescu: Adaptive rejection of unknown disturbances
Indirect adaptive control

Two-steps methodology:

1. Estimation of the disturbance model, \(D_p(q^{-1}) \)

2. Computation of the controller, considering \(H_s(q^{-1}) = \hat{D}_p(q^{-1}) \)

It can be time consuming (if the plant model B/A is of large dimension)

I.D. Landau, A. Constantinescu: Adaptive rejection of unknown disturbances
Indirect adaptive control

Step I: Estimation of the disturbance model
ARMA identification (Recursive Extended Least Squares)

Step II: Computation of the controller
Solving Bezout equation (for \(S' \) and \(R \))

\[
H_s = \hat{D}_p
\]

\[
A\hat{D}_p S' + q^{-d} BR = P
\]

\[
S = D_p S'
\]

Remark:
It is time consuming for large dimension of the plant model
Central contr: \([R_0(q^{-1}), S_0(q^{-1})]\).

CL poles: \(P(q^{-1}) = A(q^{-1})S_0(q^{-1}) + q^d B(q^{-1}) R_0(q^{-1})\).

Control: \(S_0(q^{-1}) u(t) = -R_0(q^{-1}) y(t)\)

Q-parameterization:
\[
\begin{align*}
R(z^1) &= R_0(q^{-1}) + A(q^{-1}) Q(q^{-1}) \\
S(z^{-1}) &= S_0(z^{-1}) - q^d B(q^{-1}) Q(q^{-1})
\end{align*}
\]

Control: \(S_0(q^{-1}) u(t) = -R_0(q^{-1}) y(t) - Q(q^{-1}) w(t)\),

where \(w(t) = A(q^{-1}) y(t) - q^d B(q^{-1}) u(t)\).

CL poles: \(P(q^{-1}) = A(q^{-1}) S_0(q^{-1}) + q^d B(q^{-1}) R_0(q^{-1})\).
Internal model principle and Q-parameterization

Central contr: \([R_0(q^{-1}), S_0(q^{-1})]\).

CL Poles: \(P(q^{-1}) = A(q^{-1})S_0(q^{-1}) + q^d B(q^{-1})R_0(q^{-1}).\)

Control: \(S_0(q^{-1}) u(t) = -R_0(q^{-1}) y(t)\)

Q-parameterization:

- \(R(z^1) = R_0(q^{-1}) + A(q^{-1})Q(q^{-1});\)
- \(S(q^{-1}) = S_0(z^1) - q^d B(q^{-1})Q(q^{-1}).\)

Closed Loop Poles remain unchanged

Internal model assignment on Q

\[S = S_0 - q^{-d} BQ = MD_p\]

Solve: \(MD_p + q^{-d} BQ = S_0\)

Q \((q^{-1})\) computed such as \([S(q^{-1})]\) contains the internal model of the disturbance

Will lead also to an "indirect adaptive control solution"

BUT:

Q can be used to “directly” tune the internal model without changing the closed loop poles (see next)
Direct Adaptive Control (unknown D_p)

(Based on an idea of Y. Z. Tsypkin)

Hypothesis: Identified (known) plant model (A,B,d).

Goal: minimize y(t) (according to a certain criterion).

Consider \(p_1(t) = \frac{N_p(q^{-1})}{D_p(q^{-1})} \cdot \delta(t) \): deterministic disturbance.

\[
y(t) = \frac{A(q^{-1})}{P(q^{-1})} \cdot q^{-d}B(q^{-1})Q(q^{-1}) \cdot N_p(q^{-1}) \cdot \delta(t) = \left[S_0(q^{-1}) - q^{-d}B(q^{-1})Q(q^{-1}) \right] w(t)
\]

Define:

\[
\varepsilon(t) = \frac{S_0(q^{-1})}{P(q^{-1})} \cdot w(t) - \frac{q^{-d}B(q^{-1})}{P(q^{-1})} Q(q^{-1}) \cdot w(t).
\]

Let \(\hat{Q}(t,q^{-1}) \) be an estimated value of \(Q(q^{-1}) \)

Leads to a direct adaptive control

\[
\varepsilon(t + 1) = [Q(q^{-1}) - \hat{Q}(t + 1, q^{-1})] \cdot \frac{q^{-d}B^*(q^{-1})}{P(q^{-1})} \cdot w(t) + v(t + 1)
\]

\((v(t + 1) = \text{disturbance term} \rightarrow 0) \)

I.D. Landau, A. Constantinescu: Adaptive rejection of unknown disturbances
The Algorithm

A priori adaptation error:
\[\varepsilon^0(t+1) = w_1(t+1) - \hat{\theta}^T(t)\phi(t); \]

A posteriori adaptation error:
\[\varepsilon(t+1) = w_1(t+1) - \hat{\theta}^T(t+1)\phi(t), \]

where
\[\hat{\theta}^T(t) = [\hat{q}_0(t) \hat{q}_1(t)]; \quad \phi^T(t) = [w_2(t) w_2(t-1)] \quad \text{(for } n_Q = 1) \]

and
\[w_1(t+1) = \frac{S_0(q^{-1})}{P(q^{-1})} \cdot w(t+1); \]
\[w_2(t) = \frac{q^{-d}B^*(q^{-1})}{P(q^{-1})} \cdot w(t); \]
\[w(t+1) = A(q^{-1}) \cdot y(t+1) - q^{-d}B^*(q^{-1}) \cdot u(t); \]
\[B(q^{-1}) \cdot u(t+1) = B^*(q^{-1}) \cdot u(t). \]

Parameter adaptation algorithm:
\[
\begin{cases}
\hat{\theta}(t+1) = \hat{\theta}(t) + F(t+1)\phi(t)\varepsilon^0(t+1); \\
F^{-1}(t+1) = \lambda_1(t)F^{-1}(t) + \lambda_2(t)\phi(t)\phi^T(t).
\end{cases}
\]
Direct adaptive rejection of unknown disturbances

- The order of the Q polynomial depends upon the order of the disturbance model denominator (D_p) and not upon the complexity of the plant model.
- Less parameters to estimate than for the identification of the disturbance model.
Further experimental results on the active suspension

Comparison between direct/indirect adaptive control
Real-time results

Narrow band disturbances = variable frequency sinusoid \(\Rightarrow n_Q = 1 \)
Frequency range: 25 \(\div \) 47 Hz

Evaluation of the two algorithms in real-time

Nominal controller \([R_0(q^{-1}),S_0(q^{-1})]\): \(n_{R_0} = 14\), \(n_{S_0} = 16\)

Implementation protocol 1: Self-tuning

- The algorithm stops when it converges and the controller is applied.
- It restarts when the variance of the residual force is bigger than a given threshold.
- As long as the variance is not bigger than the threshold, the controller is constant.

Implementation protocol 2: Adaptive

- The adaptation algorithm is continuously operating
- The controller is updated at each sample
Frequency domain results – indirect adaptive method

Spectral densities of the residual force. Indirect method in self-tuning operation

- Open loop (25 Hz)
- Open loop (32 Hz)
- Open loop (47 Hz)
- Closed loop (25 Hz)
- Closed loop (32 Hz)
- Closed loop (47 Hz)
Frequency domain results – direct adaptive method

Spectral densities of the residual force. Direct method in self-tuning operation

- Open loop (25 Hz)
- Open loop (32 Hz)
- Open loop (47 Hz)
- Closed loop (25 Hz)
- Closed loop (32 Hz)
- Closed loop (47 Hz)

I.D. Landau, A. Constantinescu: Adaptive rejection of unknown disturbances
Time Domain Results

Self-tuning Operation

Indirect adaptive method

Direct adaptive method

I.D. Landau, A. Constantinescu: Adaptive rejection of unknown disturbances
• **Direct adaptive control leads to a much simpler implementation and better performance than indirect adaptive control**
• **Direct adaptive control in adaptive mode operation gives better results than direct adaptive control in self-tuning mode**
Conclusions

- Using internal model principle, adaptive feedback control solutions can be provided for the rejection of unknown disturbances.
- Both direct and indirect solutions can be provided.
- Two modes of operation can be used: self-tuning and adaptive.
- Direct adaptive control is the simplest to implement.
- Direct adaptive control offers better performance.
- The methodology has been extensively tested on an active suspension system.

Open problem:
Theoretical study of the plant – model mismatch.
Direct Adaptive Control (unknown D_p)

$$
\varepsilon(t) = \frac{S_0(q^{-1})}{P(q^{-1})} \cdot w(t) - \frac{q^{-d} B(q^{-1})}{P(q^{-1})} Q(q^{-1}) \cdot w(t). \quad (*)
$$

We need to express $\varepsilon(t)$ as:

$$
\varepsilon(t+1) = \left[Q(q^{-1}) - \hat{Q}(t+1, q^{-1}) \right] \Psi(t)
$$

Using: $MD_p + q^{-d} BQ = S_0$, $(*)$ becomes

$$
\varepsilon(t+1) = \left[Q(q^{-1}) - \hat{Q}(t+1, q^{-1}) \right] \cdot \frac{q^{-d} B^*(q^{-1})}{P(q^{-1})} \cdot w(t) + \frac{M(q^{-1}) D_p(q^{-1})}{P(q^{-1})} p(t+1)
$$

Instead of solving $MD_p + q^{-d} BQ = S_0$ search recursively for:

$$
\hat{Q}(t, q^{-1})^* = \arg \min_Q \sum_{i=0}^t \varepsilon^2[i, \hat{Q}]
$$

Details:

$$
\frac{M(q^{-1}) D_p(q^{-1})}{P(q^{-1})} p(t+1) = \frac{M(q^{-1}) N_p(q^{-1})}{P(q^{-1})} \delta(t+1)
$$

$$
\frac{q^{-d} B^*(q^{-1})}{P(q^{-1})} \cdot w(t) = \frac{q^{-d} B(q^{-1})}{P(q^{-1})} \cdot w(t+1)
$$