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Abstract
We study the existence of connected coalitions in a simple game restricted

by a partial order. First, we define a topology compatible with the partial
order in the set of players. Second, we prove some properties of the covering
and comparability graphs of a finite poset. Finally, we analize the core
and obtain sufficient conditions for the existence of winning coalitions such
that contains dominant players in simple games restricted by the connected
subspaces of a finite topological space.
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1. Introduction

A simple game is a cooperative game in which every coalition is either winning
or losing, with nothing in between. These games covers direct majority rule,
weighted voting, bicameral or multicameral legislatures, committees and veto sit-
uations. For simple games it is generally assumed that there are no restrictions on
cooperation and hence, every subset of players is a feasible coalition. However, in
many social and economic situations, this model does not work. Axelrod (1970)
defines a linear order relation, policy order, in the set of players and introduces
the axiom of formation of connected coalitions, which are really convexes with
respect to the order. Faigle and Kern (1992) proposed a model in which cooper-
ation among players is restricted to some family of subsets of players, the feasible
coalitions of the game. Their idea is to restrict the allowable coalitions by using
underlying partially ordered sets. The purpose of this paper is to study the exis-
tence of winning and connected coalitions in situations where the preferences for
communication among the players are modeled by a partial order. Furthermore,
we study in a finite topological space, the domination situations given by Peleg
(1981) and Einy (1985).
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2. Topology and Order

Alexandroff (1937), has studied spaces endowed with the finest topology compat-
ible with an order. In a poset (P,≤), the topology of Alexandroff A(P,≤) is the
set of all upper sets of P . That is, U ⊆ P is open if and only if U =↑U , where
↑U := {y ∈ P : ∃x ∈ U, x ≤ y}. Then, A(P,≤) is the finest topology where the
sets ↓(x) := {y ∈ P : y ≤ x}, are closed.

Moreover, there exists the lowest topology such that the down sets ↓ (x) are
closed, and it is the upper interval topology Φ(P,≤) (see Johnstone (1982)).

The specialization ordering on a topological space X is defined by x ≤ y if
and only if x ∈ {y}, i.e., {x} ⊆ {y}. This relation is a partial order if and only if
the space X satisfies the axiom T0, that is, {x} = {y} implies x = y.

Definition 2.1. A topology in the poset (P,≤) is compatible with the order if
the specialization ordering induced by the topology coincides with the partial
order of the poset.

A topology Ω in (P,≤) is compatible if and only if Φ(P,≤) ⊆ Ω ⊆ A(P,≤). If
the poset (P,≤) is finite, then A(P,≤) = Φ(P,≤) and is the unique T0 topology
compatible with the order (see Johnstone, p. 248). In what follows, we assume
that every finite poset is endowed with this T0 topology and we denote this
topological space by FTS.

A subspace S of a topological space is connected if there do not exist a partition
of S into two disjoint nonempty open sets in S.

Let (P ≤) be a poset and let x, y ∈ P, with x ≤ y. We consider the interval
[x, y] := {z ∈ P : x ≤ z ≤ y}. The cover relation is defined by: y Â x if and only
if the interval [x, y] = {x, y}.

For a poset (P,≤) we denote by C(P ) its covering graph, that is, the graph
whose vertices are the elements of P and whose edges are those pairs {x, y} for
which x Â y or y Â x. Then, the covering graph is the undirected Hasse diagram
of (P,≤).

The comparability graph of the poset (P,≤) is the graph G = (P,E) with
{x, y} in E whenever x < y or y < x. Note that the transitive closure of the
covering graph of P is its comparability graph. We consider the following subsets:

Γ+(x) = {y ∈ P : y Â x}, Γ−(x) = {y ∈ P : y ≺ x}, Γ(x) = Γ+(x) ∪ Γ−(x).

Proposition 2.1. Let (P,≤) be an FTS. Then:

1. A ⊆ P is open if and only if Γ+(x) ⊆ A, for all x ∈ A.
2. B ⊆ P is closed if and only if Γ−(x) ⊆ B, for all x ∈ B.
3. C ⊆ P is closed and open (clopen) if and only if Γ(x) ⊆ C, for all x ∈ C.
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Proof. (1) Let x ∈ A be any element. Since A is open we have ↑(A) = A hence
↑(x) ⊆ A. Then Γ+(x) ⊆↑(x) ⊆ A.

Conversely, we only need to show that ↑A ⊆ A. If y ∈↑A then there exists
x ∈ A with x ≤ y. Assume that x < y, we can obtain a path from x to y,

x ≺ z1 ≺ · · · ≺ zp ≺ y.

Thus z1 ∈ Γ+(x) and so z1 ∈ A and by induction y ∈ Γ+(zp) ⊆ A.
The proofs of properties (2) and (3) are similar. ¤
Some notable elements in a poset can be characterized using their topological

properties.

• x ∈ P is maximal ⇔ Γ+(x) = ∅ ⇔ {x} is open.
• x ∈ P is minimal ⇔ Γ−(x) = ∅ ⇔ {x} is closed.
• x ∈ P is maximal and minimal ⇔ Γ(x) = ∅ ⇔ {x} is clopen.

A subset C of a poset is a chain if {x, y} ⊆ C, x 6= y imply x < y or y < x.
Then, the subset C ⊆ P is a chain if and only if for every pair x, y ∈ C, the
subspace {x, y} is connected.

A subset A of a poset is an antichain if {x, y} ⊆ A, x ≤ y if and only if
x = y. Then, the subset A ⊆ P is an antichain if and only if the only connected
subspaces are the sets {x}, x ∈ A.

The following theorem summarizes the properties of the connected subspaces
in a finite topological space. This result was showed for the comparability graph
of a poset by Khalimsky et al. (1990) and by Préa (1992).

Theorem 2.2. Let (P,≤) be an FTS. Then:

1. P is a connected topological space if and only if the covering graph C(P )
is connected.

2. S is a connected subspace of P if and only if the covering graph C(S) of
the induced subposet S is connected.

3. The components of the finite topological space P coincides with the com-
ponents of the covering graph.

Proof. (1) Given x ∈ P , we consider the set

C(x) := {y ∈ P : there is a path x− y}.

Let us show that A = C(x) ∪ {x} is a clopen set. First, by the definition

Γ(x) ⊆ C(x) ⊆ A.
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Next, given y ∈ A with x 6= y, there is a path from x to y. Moreover, there
is a path from x to any of the elements of Γ(y) obtained by adding the vertex of
Γ(y) or deleting y. Finally,

Γ(y) ⊆ C(x) ⊆ A.
Therefore A 6= ∅ is clopen and P is a connected topological space, and so

A = P.
Conversely, suppose that P is not connected and |P | > 1. Then P = P1 ∪P2,

where P1 and P2 are nonempty clopen disjoint sets. Take x1 ∈ P1 and x2 ∈ P2,
since the covering graph is connected, there is a path from x1 to x2. This path
must contain two adjacent vertices

y1 ∈ P1, y2 ∈ P2, such that y1 ≺ y2 or y2 ≺ y1.
Then, we have

y1 ∈ {y2} ⊆ P2 = P2 or y2 ∈ {y1} ⊆ P1 = P1.
It follows that y1 ∈ P1 ∩ P2 or y2 ∈ P1 ∩ P2, which is a contradiction.
Equivalences (2) and (3) follows from (1). ¤

A graph is a rooted tree (see Aigner, (1988)) if it is connected, there is a vertex
xr such that Γ−(xr) = ∅ and for each vertex x 6= xr we have |Γ−(x)| = 1.

A bijective map f : (P,≤) → (P 0,≤0) between finite topological spaces is
a homeomorphism if and only if for all x, y ∈ P, x ≤ y ⇔ f(x) ≤0 f(y) (see
Johnstone (1982)).

A topological space X is strongly connected if every nonempty closed subset
is connected (see Hoffmann (1981)). If X is a T0-space, then this definition is
equivalent to the specialization ordering is down-directed. Therefore, (P,≤) is a
strongly connected FTS if and only if P =↑(xr), where xr is the infimum of P .

Proposition 2.3. Let (P,≤) be an FTS. The following assertions are equivalent:

1. The covering graph of P is a rooted tree.

2. (P,≤) is strongly connected and for every x ∈ P, the closed set {x} is
homeomorphic to a chain.

Proof. (1) ⇒ (2) If P is a rooted tree, there is a vertex xr such that x 6= xr
implies xr < x, and so P =↑(xr). Moreover, the closure of any element x ∈ P is
the unique path from x to xr and it is homeomorphic to a chain.

(2)⇒ (1) If P =↑(xr), then xr is the infimum of P , so Γ−(xr) = ∅. It suffices
to show |Γ−(x)| = 1 if x 6= xr. We assume that |Γ−(x)| > 1. Then, there are two
distinct elements {y, z} ⊆ Γ−(x), hence the pair

{y, z} ⊆↓(x) = {x}.
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But {x} is homeomorphic to a chain, thus y ≤ z or z ≤ y. Both cases lead to
y = z, so |Γ−(x)| = 1. ¤

To characterize the FTS whose covering graph is a tree, we introduce the
following concepts due to Khalimsky et al. (1990).

Definition 2.2. A finite connected ordered topological space (COTS) is a poset,
with at least three points, whose specialization ordering is a zigzag, endowed with
the compatible topology.

Figure 2.1: Covering graph of a finite COTS

Definition 2.3. A digital arc in a topological space is the range of a homeomor-
phism from a finite COTS. A topological space X is digitally arc-connected if for
every x, y ∈ X, there is a digital arc from x to y.

Proposition 2.4. If (P,≤) is an FTS with |P | ≥ 3, then the following are equiv-
alent:

1. The covering graph (P,E) is a tree.

2. (P,≤) is connected, and given {x, y} ⊆ P , there is a unique digital arc C
with endpoints x and y which contains the supremum and the infimum (if
they exist) of their subsets of points.

Proof. (1) ⇒ (2) Since the covering graph C(P ) is connected, it is also digitally
arc-connected (see Khalimsky et al., Theorem 3.2). Then, there is a digital arc
C from x to y, for any {x, y} ⊆ P . The definition of finite COTS implies that C
contains the supremum and the infimum when they exist. Finally, the covering
graph is acyclic so C is unique.

(2)⇒ (1) If the FTS (P,≤) is connected, then its covering graph is connected.
Assume that the covering graph has a cycle Ck, k > 3. Then there are two
different digital arcs (which are obtained deleting intermediate chains) and we
obtain a contradiction. ¤
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Figure 2.2: Covering graph with a cycle

3. Topological Simple Games

A simple game on a finite set N is a function v : 2N → {0, 1}, with v(∅) = 0, and
such that v(S) ≤ v(T ) whenever S ⊆ T. The elements of N are called players
and the elements of 2N coalitions. Any coalition S ⊆ N is winning if v(S) = 1 or
losing if v(S) = 0. A simple game is proper if v(S) = 1 implies v(N \ S) = 0, for
all S ⊆ N , i.e.,

v(S) + v(N \ S) ≤ 1 for all S ⊆ N.

Definition 3.1. Let (N, t) be a finite topological space satisfying the axiom T0
and let v be a simple game on N . The associated topological simple game

¡
N, vt

¢
,

denoted TSG, is

vt(S) := max{v(T ) : T is a connected subspace of (S, t)}.

Note that
¡
vt
¢t
= vt, and so a simple game is a topological simple game if

and only if vt = v.
If G = (N,E) is the comparability graph of the specialization ordering of

(N, t) and S ⊆ N, the subgraph of G induced by S is the comparability graph of
the induced subposet S. Therefore, the following statements are equivalents:

1. The subspace S is connected in the topological T0-space (N, t).

2. The covering graph of the induced subposet S is connected.

3. The comparability graph of the induced subposet S is connected.

We note that if v is a proper simple game the its associated topological simple
game vt is proper and hence

vt(S) =
X
{v(T ) : T ⊆ S is a maximal connected subgraph of G}.
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Remark 3.1. Let G be the comparability graph of the specialization ordering
of t. Thus, the topological simple game vt is a Γ-component additive game by
Potters and Reijnierse (1995).

Example. Let N = {1, . . . , n} and consider the collection Fn of all the connected
subspaces of a finite COTS (N, t), that is,

Fn = {[i, j] : 1 ≤ i ≤ j ≤ n} ∪ {∅} ,
where [i, j] = {i, i+ 1, . . . , j − 1, j}. We introduce a special class of simple games
called weighted voting games. The symbol [q; w1, . . . , wn] will be used, where q is
the quota needed for a coalition to win, and wi is the number of votes of player
i. Then, the above symbol represents the simple game v defined by

v(S) =

½
1, if w(S) ≥ q
0, if w(S) < q,

where w(S) =
P
i∈S wi. Then

¡
N, vt

¢
is a topological simple game which corre-

sponds to a voting situation in a unidimensional policy order.

The core of a game (N, v) is the set

C (v) = {x ∈ Rn : x (N) = v (N) , x (S) ≥ v (S) for all S ⊆ N} ,
where x (S) =

P
i∈S xi and x(∅) = 0. A simple game has a nonempty core if and

only if the set
V =

\
{S⊆N : v(S)=1}

S 6= ∅.

First, we obtain a characterization of the core of vt by using only connected
coalitions.

Proposition 3.1. Let (N, v) be a simple game and let (N, t) be an FTS with
comparability graphG = (N,E). If F is the collection of the connected subgraphs
of G, and v(N) = vt(N) then

C
¡
vt
¢
= {x ∈ Rn : x(N) = v(N), x(S) ≥ v(S) for all S ∈ F} .

Proof. If x ∈ C ¡vt¢ then x(N) = vt(N) = v(N) and x(S) ≥ vt(S), for all
S ⊆ N. Hence x(S) ≥ vt(S) = v(S), for all S ∈ F .

Conversely, let x ∈ Rn such that x(N) = v(N), and x(S) ≥ v(S), for all
S ∈ F . Then, for all S ⊆ N,

x(S) =
X
i∈S

xi =
X
k

x(Tk) ≥
X
k

v(Tk) = max
k
v(Tk) = v

t(S),

where {Tk} is the partition of S in its maximal connected subgraphs. ¤
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The vectors {ei}ni=1 are the vectors of the canonical basis of Rn. The indicator
function 1S : N → {0, 1} for the subset S ⊆ N is given by

1S(i) =

½
1, if i ∈ S
0, otherwise.

In the following theorem, we will give results concerning the structure of the
core for topological simple games. Let G = (N,E) be the comparability graph of
the specialization ordering of (N, t) and let F be the collection of the connected
subgraphs of G. We consider now the set

VF =
\

{S∈F : v(S)=1}
S.

Theorem 3.2. Let (N, vt) be a TSG with vt(N) = 1 and let F be the collection
of the connected subgraphs of its comparability graph. Then VF 6= ∅ if and only
if C

¡
vt
¢ 6= ∅. Furthermore,

C
¡
vt
¢
= {x ∈ Rn : x ≥ 0, x (N) = x (VF) = 1} .

Proof. If VF 6= ∅ we take ei ∈ Rn such that i ∈ VF . For all S ∈ F such that
v(S) = 1 we have i ∈ S, and hence ei (S) ≥ v (S) for all S ∈ F . Moreover, since
ei (N) = 1 = v

t (N) , Proposition 3.1 implies that ei ∈ C
¡
vt
¢
.

We observe now that {i} ∈ F , and then

C
¡
vt
¢
= {x ∈ Rn : x ≥ 0, x(N) = x(S) = 1 for all S ∈WF} ,

where WF = {S ∈ F : v(S) = 1}. To obtain the converse, if C
¡
vt
¢
is nonempty

we have that the linear system

nX
j=1

xj = 1, Ax = 1, xj ≥ 0, j = 1, . . . , n

where A = (1S)S∈WF has a solution x 6= 0. We claim that VF 6= ∅, becauseT
S∈WF S = ∅ implies that every column of the matrix A has at least one entry

equal to 0. We take the sum of equations h1S , xi = 1, for all S ∈WF and obtain

α1x1 + · · ·+ αnxn = |WF | , with αj < |WF | , 1 ≤ j ≤ n.

Therefore, (|WF |− α1)x1+ · · ·+(|WF |− αn)xn = 0, and this is a contradic-
tion. ¤

Corollary 3.3. If (N, vt) is a TSG with vt(N) = 1, then

C
¡
vt
¢
= conv {ei : i ∈ VF} .
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Proof. Since ei ∈ C
¡
vt
¢
for all i ∈ VF , the convexity of the core implies that

the convex hull of these vectors is a subset of the core. To prove the reverse
inclusion, let x be a vector of C

¡
vt
¢
. If i /∈ VF then xi = 0, since there is at least

one S ∈WF such that i /∈ S and x(S) = x(N) = 1. ¤

Example. Let N = {1, . . . , n} be a set of players. Let us consider the weighted
voting game v = [q; w1, . . . , wn], given by

w1 = · · · = wn = 1 and q =
»
n+ 1

2

¼
,

where dxe is the least integer ≥ x. If (N, t) is a finite COTS then the collection of
the connected subspaces is Fn = {[i, j] : 1 ≤ i ≤ j ≤ n} ∪ {∅}. We observe that

VFn =
½¹
n+ 1

2

º
,

»
n+ 1

2

¼¾
,

and hence we may apply Corollary 3.3 and obtain

C
¡
vt
¢
=

½ {ek+1} if n = 2k + 1,
conv {ek, ek+1} if n = 2k.

Note the power of the central players with respect to the policy order.

Given a game (N, v) and a coalition S ⊆ N , the subgame (S, v |S) is obtained
by restricting v to 2S. Propositions 2.3 and 2.4 imply the next properties of
topological simple games.

Proposition 3.4. Let (N, vt) be a TSG whose covering graph of specialization
ordering of t is a rooted tree. Then:

1. Every coalition containing the root is connected.

2. For all i ∈ N , the subgame
³
{i}, vt |{i}

´
satisfies vt |{i} = v |{i}.

Proposition 3.5. Let (N, vt) be a TSG whose covering graph of specialization
ordering of t is a tree. Then:

1. For every {i, j} ⊆ N with i < j, the subgame
¡
[i, j], vt |[i,j]

¢
satisfies vt |[i,j]

= v |[i,j].
2. If {i, j} ⊆ N is an antichain, there is a subgame C such that it is a COTS
with the induced topology.
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Note that under the respective hypothesis, if i < j then we obtain topological
subgames which are ordinary games in the intervals [i, j]. For an antichain, the
subgame is defined in the connected coalitions of a COTS, and these coalitions
coincide with the convex coalitions for linear orderings studied by Axelrod, Peleg
and Einy (see Einy, Definition 3.2).

Now, we analyze the relation between domination and connectivity. We need
the following concepts by Einy and Peleg.

Definition 3.2. Let (N, v) be a simple game and let S ⊆ N . A player i ∈ S
weakly dominates S if v (B ∪ (S \ {i})) = 1 implies v (B ∪ {i}) = 1, for every B
such that B ∩ S = ∅.

In this case, we denote {i} a S \ {i}. Let (N, vt) be a topological simple game
and we define:

Hi = {S ⊆ N : i ∈ S, v(S) = 1, and {i} a S \ {i}} .
Ci = {S ⊆ N : i ∈ S, v(S) = 1, and S is connected in (N, t)} .

Einy (Propositions 5.8 and 5.9) studied the compatibility of Axelrod’s hy-
pothesis (only connected coalitions with respect to a linear order are formed) with
several hypothesis about winning coalitions which are dominated by a player.
We obtain sufficient conditions for the existence of topological simple games with
winning and connected coalitions containing a player such that this player weakly
dominates these coalitions.

Theorem 3.6. Let (N, v) be a proper simple game with |N | ≥ 3 and let (N, t)
be an FTS such that its covering graph is a tree. If there is a player i ∈ N such
that v

³
{i}
´
= 1 and v({i, j}) = 1 for some j /∈ {i}, then Hi ∩ Ci 6= ∅.

Proof. Given {i, j} ⊂ N , there is a unique connected coalition S0 homeomorphic
to a COTS with endpoints i and j. Then, S0\{j} and {i} are connected containing
i, hence S = (S0 \ {j}) ∪ {i} is connected and v(S) = 1 since v is monotone.
Therefore, S ∈ Ci. If we prove that i weakly dominates S, we have S ∈ Hi, and
Hi ∩ Ci 6= ∅. Thus, given B ⊆ N with B ∩ S = ∅ and v (B ∪ (S \ {i})) = 1,
it is enough to show that v(B ∪ {i}) = 1. If we assume that j ∈ B, then
{i, j} ⊆ B ∪ {i} and the hypothesis v({i, j}) = 1 implies that v(B ∪ {i}) = 1.
Note that if j /∈ B, then B∪(S\{i}) ⊆ N\{i, j}. But v is proper and v({i, j}) = 1,
thus v(B ∪ (S \ {i})) = 0, which contradicts the hypothesis. ¤

The condition of Theorem 3.6 is not necessary, as the following example shows:

Example. Let v = [6; 3, 2, 2, 3] be a voting game with four players. In the

COTS with covering graph ÂÁÂ player 1 satisfies v
³
{1}
´
= v ({1, 2}) = 0. But

S = {1, 2, 3} ∈ C1 and {1} a S \ {1}. Hence S ∈ H1 ∩ C1.
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The Dilworth’s chain decomposition can be interpreted as a Ramsey theorem:
Any ordered set P of size at least ab + 1 contains either a chain of length a + 1
or an antichain of size b+ 1 (see Bogart et al.(1990)). We apply the Dilworth’s
theorem to a society N , with a partial ordering of its members. The minimal (by
set inclusion in N ×N) ordering is the trivial ordering, i.e., x ≤ y in N implies
x = y and the maximal ordering is the linear ordering. We suppose that every
coalition of three members has got at least one relation and obtain winning chains
(coalitions with total cooperation) for majority games.

Theorem 3.7. Let (N, vt) be a TSG whose covering graph has no antichain of
size three and v(S) = 1 if and only if |S| ≥ bn/2c + 1, where n = |N |. Then, if
n = 2k + 1 there is a minimal winning chain and if n = 2k, k ≥ 2, there is a
minimal winning chain or N = C1∪C2, where the chains have exactly k elements.

Proof. If n = 2k + 1, and take a = k, b = 2, then there is a chain S ⊆ N with
a + 1 = k + 1 elements. Therefore, |S| = k + 1 = bn/2c + 1, so S is a minimal
winning chain. If n = 2k, take a = k − 1, b = 2, then ab + 1 = 2k − 1 and
|N | = 2k > ab+ 1. Thus, there is a chain S with a+ 1 = k elements. If S is not
maximal, then there is a minimal winning chain with k+1 = bn/2c+1 elements.
Otherwise, N is the union of two disjoint chains of k elements. ¤
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