D-OSKIL: A New Mechanism for Controlling Stick-Slip Oscillations in Oil Well Drillstrings
Carlos Canudas-de-Wit, Francisco R. Rubio, Member, IEEE, and Miguel Angel Corchero

Abstract—Limit cycles occurring in oil well drillstrings result from the interaction between the drill bit and the rock during drilling operations. In this paper, we propose to use the weight on the bit (WoB) force as an additional control variable to extinguish limit cycles when they occur. An approximate analysis based on the bias describing function and completed with some simulations, provides good evidence that the rotational dynamics of the oil well drillstring displays such a behavior. In particular, we propose an adaptation law for the WoB named D-OSKIL mechanisms, which results from a variant of the oscillation killer (OSKIL) mechanism studied in detail in [6]. In opposition to the heuristic control structure proposed in [7], we show that the new WoB \(W_{OB} \) control law results in a globally asymptotically stable closed-loop system. Simulations applying the D-OSKIL mechanism show that the stick-slip oscillations can be eliminated without requiring a redesign of the velocity rotary table control.

Index Terms—Oil well drillstring, oscillation control, passivity control, stick-slip elimination.

I. INTRODUCTION

Oil well drillstrings (see Fig. 1) are systems which present interesting features from the dynamical and control viewpoints as they pose many challenging technological problems [26], [34]. The application of dynamic analysis and control techniques in a drilling system can lead to conclusions that allow us to propose new recommendations for drilling operations, drillstring design, and control algorithm, which would produce economic benefits through a mix of lower development costs, higher production rates, and improved recovery. Particularly, the presence of stick-slip, self-excited oscillations at the bottom part of the drillstrings as well as decreasing service life of drillstrings and downhole equipment, has drawn the attention of the control community in the last decade. The elimination of this kind of oscillations is a challenge for drillers and scientists since it can provide important cost savings in drilling operations, in terms on money and exploitation time [21].

Different oscillations affecting the drillstring behavior are unavoidable. The occurrence of self-excited stick-slip vibrations (i.e., the top of the drillstring rotates with a constant rotary speed, whereas the bit (cutting device) rotary speed varies between zero and up to six times the rotary speed measured at the surface) as a common and damaging phenomena in drillstring systems has been highly described and analyzed in recent years, drawing the attention of the control community. For more information about drillstring oscillations and stick-slip phenomenon in oil well drillstrings, please see [14], [21], [24], and [31].

Some causes of stick-slip oscillations are backlash between contacting parts, hysteresis, nonlinear damping, and geometrical imperfections which are very difficult to model. However, the main cause of such vibrations in drillstrings is the friction appearing by contact with the rock formation [3], [17]. Consequently, a model describing the drillstring behavior should include a bit-rock friction torque model adequate enough to properly reproduce this effect.

Many ways of reducing these vibrations have been proposed, both from practical and theoretical viewpoints.

Historically, the experience of drillers has revealed that the manipulation of different drilling parameters (increasing the rotary speed, decreasing the weight-on-bit (WoB), modifying the drilling mud characteristics, introducing an additional friction at the bit [25], etc.) is an effective strategy to suppress stick-slip motion [28]. However, this strategy depends too much on the personal skills of each drilling technician to be really effective.

Usually, drilling systems are velocity-controlled to make them rotate at a constant velocity, but no specifications about vibration suppression or damping are considered. Another control option would be introducing new regulation methodologies (active, passive) in the loop, specifically aimed to compensate for drillstring vibrations. Among those, the following examples can be pointed out:

- so-called soft torque rotary system (STRS) [13], [28], that is a torque feedback at the top of the drillstring which makes the system behave in a “softer” way rather than as a fixed heavy flywheel, so that the torsional waves arriving at the surface are absorbed, breaking the harmful cycling motion;
- introducing a vibration absorber at the top of the drillstring [15] which follows the same approach given in [13] and [28];
- introducing a proportional–integral–differential (PID) controller structure at the surface in order to control the rotary speed [1], [23]–[25];
- using robust controllers, like the linear \(H_{\infty} \) control proposed in [29], to suppress stick-slip motion at the bit;
using a controller based on an input-state feedback linearization of the nonlinear friction torque [2]. However, few works have provided a formal stability analysis of their proposed control strategies. For instance, analysis of the dynamical behavior of drillstring under vibrations has been explored in [1] and linear approximations to stability of controlled drillstring has been studied in [24].

The value of the system weight measured at the bottom part, called WoB, has been proven to be an important parameter in the occurrence and possible avoidance of stick-slip oscillations (see [23] and [28]).

Efficient drilling operation requires a certain amount of force (WoB) that may be incompatible with the low force range which may avoid stick-slip oscillations. This tradeoff between force magnitudes, provides a first indication that a regulation strategy of (WoB) seems to be necessary to maintain a good drilling operation, thus, avoiding such oscillations (see [7] and [24]).

This paper is focused on the problem of stick-slip oscillations produced at the bottom-hole assembly (BHA). The main idea is to use the WoB force as an additional control variable. In particular, we adapt the oscillation killer (OSKIL) mechanism studied in [6], to the oil well drillstring systems (named here D-OSKIL) which has been shown to be particularly adapted for nonlinear systems displaying a local stable region with a stable limit set outside this local domain.

An approximate analysis based on the bias describing function provides good evidence that the rotational dynamics of the oil well drillstring display a similar behavior pattern. This analysis, although approximate, also gives a good intuition in the way that the WoB needs to be modified to suppress oscillations. An important property of the proposed D-OSKIL mechanism is that it allows recovering the nominal operation condition (the WoB recovers its nominal drilling value) while oscillations are suppressed.

In opposition to the heuristic control structure proposed in [7], we show that the new proposed WoB control law results in a globally asymptotically stable closed-loop system. Therefore, the D-OSKIL mechanism eliminates the stick-slip oscillations without requiring a redesign of the velocity rotary table control.

This paper is organized as follows. In Section II, the basics about drillstring dynamics and vibrations are briefly introduced. In Section III, the drillstring model used in this paper is presented. The control loop used to regulate rotational velocity of the set and the a priori behavior of the closed-loop system are shown in Sections IV and V, respectively. In Section VI, a describing function-based analysis is made in order to obtain some information about stick-slip oscillations in the system, and next, in Section VII, the control mechanism named D-OSKIL obtained from the conclusions of the previous analysis is presented. In Section VIII, some simulations are shown. Section IX proposes an observed-based version of the same controller where only field existing measures are used. In the same section, we show also some simulations. Finally, Section X submits the conclusions and future research lines.

1D-OSKIL stands for drilling oscillation killer mechanism.
II. BASICS ON DRILLSTRING DYNAMICS AND VIBRATIONS

Standard rotatory drilling equipment, as shown in Fig. 1 to depict what is commonly used by oil companies to extract gas and oil from the earth surface, uses a drill-bit (called bit) to crush the rock and make the hole in the ground. As the hole becomes deeper, some pipe sections (called drill pipes) are added, leaving the bit coupled at the bottom part of the set. These pipes, together with the drill bit, form the so-called drillstring. This drillstring is moved by means of a motor or system of motors in the surface. As it has been shown in the previous Section, operation of the drillstring looks just like that of a household electric drill, where a motor makes the bit rotate, and enough weight is applied to maintain the contact between the bit and the object to be drilled.

In order to make the study of a drilling system structure a bit more comprehensive, the following parts can be emphasized.

- **Power System**: A set of diesel and electric motors that provide the necessary energy to perform all the tasks.
- **Supporting Structure**: This is used to move the pipes in and out of the oil well, and so, to vary the weight applied during the process.
- **The Rotatory System** to make the system rotate. It is composed by the following.
 - **Swivel and Kelly**: To connect the supporting and rotatory systems.
 - **Rotatory Table**, also called turntable: It is a large disc-shaped inertia coupled to the drillstring that drives the rotating motion using power from electric motors.
 - **Drillstring**: As shown before, it is a sequence of tubes that connect the rotatory table and the bit.
- **Bit**: The cutting device.
- **Circulation System**: It consists of a set of pipes and pumps which create a flow within the hole by drilling mud into it. This substance is aimed to lubricate and refrigerate the contact between the rock and the bit, and so to lift the rock cuttings from the drill bit to the surface.

A more exhaustive description of the rotatory system can be found in [21] and [31] among other papers.

One of the main problems is the appearance of oscillatory behaviors (limit cycles), that cause a decreasing of the drilling performance from the viewpoints of different parameters (rate of penetration at the surface, rotational speed of the bit, etc.) and so provoking the mechanical failure of the drillstring or the breakage of any of the elements [31].

The vibrations appearing in the drillstring can be divided into three different categories [10], [14] (see Fig. 2).

- **Longitudinal vibrations** are produced in a vertical direction from the drilling tower, causing rebounds of the bit at the bottom of the oil well, a phenomenon called bit-bouncing.
- **Lateral vibrations** are produced when the drillstring’s mass center is displaced from the rotation axis, causing whirl-like movements and rebounds within the oil well walls, a phenomenon called whirling.
- **Torsional vibrations** are produced when the rotational velocities at the surface and the bottom of the drillstring are different, causing stick-slip movements.

Each oscillation phenomenon appears both at different times and different frequency ranges, and so, they can be studied separately. This work is focused on stick-slip vibrations.

The stick-slip oscillations are generally associated to typical dry friction profiles [19], i.e., when there is no movement, the friction torque (static friction) is larger than in non zero velocity cases (dynamic friction). The difference between those two magnitudes has been shown by many authors to be one of the most relevant variables that characterizes stick-slip oscillations [22].

III. SYSTEM MODELING

Multiple kind of models have been used in literature to describe drillstring systems (see, for example, [19] and [31]). The type and the complexity of the model to be used are closely related to the aim pursued (modelling, simulation, model for control, etc). However, lumped parameters models have been shown to be valid enough to properly describe the stick-slip oscillation phenomena and easy enough to make the study not too complex [10].

The problem of modeling stick-slip phenomenon in a drillstring by means of a lumped-parameter model has been studied from several points of view. Most of them consider the drillstring as a torsional pendulum with different degrees of freedom, for instance: [17], [20], [27], and [32] propose single-degree-of-freedom models, [1], [5], [22], and [24] propose two-degree-of-freedom models including a linear controller, and [15] and [29] present two-degree-of-freedom models for the mechanical part of the system plus the model for the rotatory table electric motor system.

As it will be seen in subsequent sections, the bit-rock friction model is fundamental for properly reproducing stick-slip oscillations phenomenon. Many models have been proposed in literature, some of them summarized in [22]. The model used here (depicted in Fig. 3) is a two-degree-of-freedom model with two inertial masses, and , locally damped by and . The inertias are coupled with each other by an elastic shaft of stiffness and damping . The variables and stand for the rotation and the bit angle. The torque rotation control signal used to regulate the rotary angular velocity . The torque on bit (ToB) represents the total friction torque over the drill bit.
The model equations are as follows:

\begin{align}
J_r \ddot{\phi}_r + c(\dot{\phi}_r - \dot{\phi}_b) + k(\phi_r - \phi_b) + d_r \dot{\phi}_r &= v \\
J_b \ddot{\phi}_b + c(\dot{\phi}_b - \dot{\phi}_r) + k(\phi_b - \phi_r) + d_b \dot{\phi}_b &= -\text{ToB}.
\end{align}

In constants above, the sub-script "r," and "b" stands for rotary and bit, respectively.

A suitable model for ToB is essential, because the reproduction of stick-slip vibrations will strongly depend on the particular choice of the model for ToB. This torque represents the combined effects of reactive torque on the bit and nonlinear frictional forces along the drillstring. In our case, the ToB will be given by the product of \(\mu(\dot{\phi}_b, z) \), which describes the normalized (dimensionless) torsional bit-rock friction (different bit-rock friction models are presented in [22]), and the normal force \(u \) called WoB, i.e.,

\[\text{ToB} = \mu(\dot{\phi}_b, z) \cdot u. \]

Several forms for \(\mu(\dot{\phi}_b, z) \) can be considered according the use of the model. Next, we describe the model for ToB used for simulations and for validating the control law, then a simplified model is introduced for control analysis purposes.

A. Model for Simulations

The state-space representation of the later model is as follows:

\[\dot{x} = A x + B v + H \mu(x, z) u \]

\[z = f(x, z) \]

with

\[
A = \begin{pmatrix}
0 & \frac{1}{J_r} & -1/J_r \\
\frac{c}{J_r} & \frac{-k}{J_r} & \frac{d_r}{J_r} \\
\frac{1}{J_b} & \frac{-k}{J_b} & \frac{d_b}{J_b}
\end{pmatrix},
\]

\[
B = \begin{pmatrix}
0 \\
1 \\
0
\end{pmatrix},
\]

\[
H = \begin{pmatrix}
0 \\
0 \\
1
\end{pmatrix}.
\]

\[x = [x_1, x_2, x_3]^T \]

where the state \(x = [x_1, x_2, x_3]^T \) is defined as follows:

\[x_1 = \phi_r - \phi_b, \quad x_2 = \dot{\phi}_r, \quad x_3 = \dot{\phi}_b. \]

In this description, the state \(z \in \mathbb{R} \) represents the internal friction state and (3) describes the friction dynamics. Various friction models have been shown to work properly to capture the typical friction phenomena (stiction, Striebeck effect, etc.) which cause stick-slip oscillations ([12] and [18]). One possible model for (5) is the \textit{LuGre} friction model [8]

\[
\begin{align}
\dot{z} &= x_3 - \sigma_0 \frac{|x_3|}{g(x_3)} z \\
g(x_3) &= \mu_C + (\mu_S - \mu_C) e^{-x_3/v_C} \\
\mu(x, z) &= \sigma_0 z + \sigma_1 z^2.
\end{align}
\]

The function \(g(v) \) mainly affects the steady-state characteristics of the friction model. In steady-state, the model predict the following friction value, \(\mu_S(x_3) = g(x_3)\text{sgn}(x_3) \). In this model, \(\sigma_0, \sigma_1, v_C, \mu_C, \mu_S \) are positive constants characterizing the friction physical properties. Also, note that the torsional linear friction at the drill bit side is already incorporated in the \(A \) matrix of the representation (4).

B. Model for Control

Note that the previous model for the \(\mu(x, z) \) includes an additional friction dynamics \(z \), which is suited to describe motion at presliding, and in particular, to regularize the differential equation describing the system dynamics. An alternative is to use static description for \(\mu(x) \) (maps without memory), which may be simply for control analysis. The difference between both models, may not be too significant, as long as computation issues are strongly simplified. The model for control is then described by

\[\dot{x} = Ax + Bu + H \mu(x_3)u \]

where here \(\mu(x_3) \) is a static map between the bit rotational velocity \(x_3 = \dot{\phi}_b \) and the normalized friction parameter \(\mu \), i.e., the steady-state form of the model (7), or any suitable approximations like the one shown in Fig. 12.

IV. ROTATIONAL VELOCITY REGULATION LOOP

The first task to confront is designing a proper control law for motor torque \(v \). This signal will be aimed mainly at regulating the rotational velocity of the rotatory table \(\dot{\phi}_r \) to a certain desired value \(\omega_d \) (a typical value for \(\omega_d \) is 5 rad/s). As we have shown in Section I, many architectures have been proposed for that purpose, from classic PID structures to a linear \(H\infty \) robust control, although oil well drillstrings usually operate with reduced-order simple control laws.

A. Rotary Table Velocity Control Loop

In this paper, the structure of the velocity controller is inspired by the one presented in [10], as shown by

\[v = k_1(\omega_d - \dot{\phi}_r) + k_2 \int (\omega_d - \dot{\phi}_r) dt - k_3(\dot{\phi}_r - \dot{\phi}_b) \]
or equivalent

\[v = k_1(\omega_d - x_2) + k_2x_4 - k_3(x_2 - x_3) \quad x_4 = (\omega_d - x_2) \]

then the closed-loop equations take the form for the model for simulation

\[\dot{x} = A_dx + B_d\omega_d + H_d\mu(x, z)u \tag{10} \]
\[\dot{z} = f(x, z) \tag{11} \]

and the following one for the model for control analysis:

\[\dot{x} = A_dx + B_d\omega_d + H_d\mu(x_3)u \tag{12} \]

with the obvious observation that \(x \) is now of dimension four (due to the introduction of an integral term in the rotary table control), i.e., \(x = [x_1, x_2, x_3, x_4] \), and with the \(A_d, B_d, \) and \(H_d \) given as

\[A_d = \begin{pmatrix} 0 & 1 & -1 & 0 \\ \frac{1}{k} & 0 & -\frac{1}{(c+k_1+k_3)} & \frac{1}{k} \\ \frac{1}{k} & 0 & -\frac{1}{(c+k_3)} & \frac{1}{k} \\ 0 & 0 & 0 & 1 \end{pmatrix} \]

\[B_d = \begin{pmatrix} 0 \\ 0 \\ \frac{1}{\mu} \\ 1 \end{pmatrix} \]

\[H_d = \begin{pmatrix} 0 \\ 0 \\ \frac{1}{\mu} \\ 0 \end{pmatrix} \]

The steady-state value of \(x \), considering \(\mu^* = \mu(x_3^*) \), is

\[x_1^* = \frac{u_0\mu^* + d_0\omega_d}{k} \tag{13} \]
\[x_2^* = \omega_d \tag{14} \]
\[x_3^* = \omega_d \tag{15} \]
\[x_4^* = \frac{(d_0 + d_f)\omega_d + \mu^*u_0}{k_2} \tag{16} \]

Therefore, rotatory table and bit velocities stabilize at the desired rotational velocity, revealing a proper feature in our feedback control law.

There are many possible ways of adjusting the gains \(k_1, k_2, \) and \(k_3 \). One possible option is to use a classic two-time-scales separation method to accomplish this (see, for example, [9]). Further details are given in Appendix A.

B. Closed-Loop System Model Validation

Once the control torque has been designed and tuned, the global performance of the model in terms of reproducing the behavior of real drilling equipment, particularly the ability of reproducing stick-slip oscillations, must be validated.

In Fig. 4, a comparison between stick-slip oscillations measured in the field (Fig. 4 obtained with permission from [29]) and the ones produced by simulating the closed-loop system (10) and (11) can be seen. Note that, although the model does not include the lateral and vertical motion dynamics, it is able to reproduce trajectories that are qualitatively close to the ones reported from field data in terms of frequency, amplitude, and shape. Irregularities in the oscillation amplitudes of the field measures are probably due to the vertical bouncing oscillations not included in our model.

V. Preliminary Analysis of Stick-Slip Oscillations Behavior

With regards to the oscillatory behavior of drillstring system, it is assumed that, depending on certain working parameters like the instantaneous value of WoB, the rotatory speed of the set, the velocity control gains values, and so forth, the drillstring system can enter into oscillation.

There will be cases in which the controller can suppress such oscillation, and so, the system recovers its nominal working regime, and other cases in which the system enters into sustained oscillation. This behavior is observed in real drillstring equipment, as seen in Fig. 4.

A particular feature of the model presented here (for simulations) is that it succeeds in reproducing such behavior, as it can be seen in Fig. 5, where the WoB parameter is perturbed away from its nominal operation value; in the upper left-hand corner of Fig. 5, the WoB changes from 40 000 to 45 000 N and the controller is still able to correctly regulate the rotatory speed, whereas in the lower part of Fig. 5 the WoB is perturbed...
is assumed to be constant. Indeed, the system behavior
will...are the particular values satisfying both equalities.
and \(y \) are...is the resulting...can only cross the
when...This is the pattern display with our system
limited by a stable limit cycle (some more formal statements
display a stable equilibrium surrounded by an attractive region
existively in Fig. 6. From Fig. 6, the nonlinear system is expected to
operate. The system trajectories are shown intu-
...oscillations, if any. They represent the amplitude and frequency of the predicted
such limit cycles. Furthermore, for values of \(\mu \) smaller than the one corresponding to the bifurcation point, limit cycles disappear and the equilibrium becomes globally stable.

VI. STICK-SLIP OSCILLATIONS PREDICTION
BASED ON DF-ANALYSIS

The oscillation pattern shown by Fig. 4 reflects two main characteristics: first, oscillations will present a bias term, and second, they are dominated by a main harmonic with a relatively well-defined period. Therefore, the sinusoid plus bias describing function (SBDF) method can then be used as a first approximation to predict possible limit cycle and to study its stability. To further simplify the computation of the SBDF corresponding to the nonlinear dynamic friction map (7), we would rather use a simpler approximation of the resulting steady-state characteristic of (7), see Fig. 7. This approximation is valid because the friction dynamics are much faster than the ones of the drillstring mechanism.

The setup for this study is shown in Fig. 7. \(G(s) \) is the linear map from \(G(s) : (\ddot{w}_d \rightarrow T_{oB}) \rightarrow y = \dot{\varphi}_h \) and \(\ddot{w}_d \) is the resulting bias due to the constant reference \(\dot{\omega}_d \).

Applying harmonic balance, the necessary condition to produce maintained oscillations in the system is

\[
G(j\omega) = \frac{-1}{N_1(A_0, \omega_0, y_0) + G(0)N_0(A_0, y_0)} = W(0)\dot{\omega}_d. \tag{17}
\]

\[
y_0[1 + G(0)N_0(A_0, y_0)] = W(0)\dot{\omega}_d. \tag{18}
\]

\(A_0 \) and \(\omega_0 \) are the particular values satisfying both equalities. They represent the amplitude and frequency of the predicted oscillations, if any. \(y_0 \) is the output bias and \(N_1 \) and \(N_0 \) are given in Appendix B.

Note that \(G(j\omega) \) depends on the control parameters, hence, the assigned bandwidth \(\omega_n \).

Since the observed oscillations are clearly asymmetrical, the SBDF is used to compute \(N_1(A, \omega, y_0) \), see [4]. \(N_1(A, y_0) \) will have only a real part because the friction torque characteristic has an odd symmetry.

Note that the frequency locus of \(G(j\omega) \) can only cross the real axis at one point, then \(\omega_n \) can be uniquely computed from

\[
\text{Im}\{G(j\omega_n)\} = 0, \quad \omega_n \neq 0, \quad |\omega_n| < \infty, \quad \text{and hence it does not depend on the other two unknown variables } A_0 \text{ and } y_0. \text{ The introduction of an integral action in the velocity control results}

Fig. 5. Different behaviors obtained by perturbing WoB. Figures show the
time-profiles of the table and bit speed.

Fig. 6. Presents the general idea of a local equilibrium encircled by a stable
limit cycle. When the perturbation is not too large system trajectories return to
equilibrium. When the perturbation is large enough, the trajectory converge to
a limit cycle.

enough (from 40 000 to 50 000 N) so that the velocity controller
cannot compensate the perturbation and the system enters into
stick-slip oscillation.

A. Intuitive Behavior

Although the system at hand is more complex, the following explanation of the system behavior gives some intuition on how
the system may operate. The system trajectories are shown intuitively in Fig. 6. From Fig. 6, the nonlinear system is expected to
display a stable equilibrium surrounded by an attractive region
limited by a stable limit cycle (some more formal statements
will be given later). This is the pattern display with our system
when \(\mu \) is assumed to be constant. Indeed, the system behavior
is even more complex when \(\mu \) can take on different values. For instance, a saddle-node bifurcation of periodic orbits may be ex-
hibited if the value of \(\mu \) is decreased enough. In that case, two
limit cycles emerge at the bifurcation point, one of them being
stable while the other is unstable. As the system has an equilib-
rium point, its local stability is not affected by the emergence of
in $G(0) = 0$ and $W(0) = 1$. Therefore, the output bias can be straightforwardly computed from (18). Yielding
\[
y_0 = \frac{W(0)}{[1 + G(0)N(0)]} \omega_d = \omega_d.
\]
With $y_0 = \omega_d$ known and independent of frequency and amplitude, the prediction of the limit cycle and its associated amplitude A_0, can be obtained only from (17), i.e.,
\[
|G(j\omega_0)| = \frac{1}{N(A_0)}
\]
with $N(A_0) = N_1(A, \omega_d)$.

Fig. 8 shows how $-1/N(A)$ changes as a function of A. The main feature of this amplitude locus, pertinent to oscillation predictions, is the location of points p_0 and p_1. These points derive from the maximum and minimum values of $N(A)$. In particular, it is interesting to notice that these points have the following property:
\[
|p_0| \approx \frac{1}{W_0B}, \quad |p_1| \approx \frac{1}{W_0B}.
\]

Then, low values of WoB make these two points larger in magnitude (its sign remains unchanged), reducing the possibility to intersect the Nyquist of $G(j\omega)$. Inversely, when the weight on bit force increases, the probability of oscillation is higher.

It is also interesting to note, that for almost every realistic choice of ω_h, two sets of limit cycles will be predicted: one stable set and another unstable. The stable set arises at amplitudes $A = A_s$, whereas the unstable one occurs for $A = A_u$. In all cases $A_s > A_u$. This means that for all parameter combinations (W_0B, ω_h), where an intersection of $G(j\omega)$ and $-1/N(A)$ takes place, there exists a local (attractive) stable domain delimited by A_u. This property is further exploited in the proposed D-OSKIL mechanism.

It is also of interest to compute the set of possible combinations between system bandwidth and weight on bit force for which stable limit cycles are predicted. Fig. 9 shows the area in the (W_0B, ω_h)-plane giving rise to possible stable oscillations. This analysis allow us to determine the range of proper values of controller closed-loop bandwidth to avoid oscillations as a function of the operating WoB. As Fig. 9 shows, and on the basis of this analysis, oscillations may be eliminated either by changing ω_h, and/or by reducing the WoB magnitude.

One possible control strategy could be then to modify the rotary table bandwidth to reduce the possibility of entering into oscillation. From Fig. 9, we can see that suitable choices for ω_h are either small or large values. Small values are not suited because they yield to poor performance and large values are limited by noise. Typical values for ω_h are in the range $[20, 30]$ rad/s.

Another alternative will be to keep the value of WoB below the oscillation zone. However, this will have two drawbacks: first, high-performance drilling operations require magnitudes for WoB larger than the ones indicated by the oscillation limits, and second, this strategy will require a precise knowledge of this map, which in addition will vary according to drilling
High-performance drilling operation takes place in a region in the plane \((WoB, \omega_0)\), where potential oscillations may occur. Therefore, in this paper, we account for this particularity assuming that the nominal system operation parameters are taken within this zone. The design of the D-OSKIL mechanisms presented next, will be performed in light of the following two observations:

- oscillation can be eliminated by decreasing the WoB force;
- if WoB is reduced from its nominal value, then after the oscillation has been eliminated, the value of WoB needs to be brought back to its nominal value again to restart an efficient drilling operation.

VII. D-OSKIL MECHANISM DESIGN

This section presents the design of the D-OSKIL mechanism, which stands for drilling oscillation killer. First, we introduce some intuitive ideas completing the understanding on the system behaviors gained in previous sections. Then, we present the mathematical form for this algorithm and the different steps involved in their stability properties.

A. Basic Ideas

Let us first assume that the normal force \(u\) (i.e., the WoB), is given as the sum of the nominal weight of the drillstring \(u_0\) and the D-OSKIL control signal \(\hat{u}\)

\[
u = u_0 + \hat{u}.
\]

Fig. 10 is a schematic description of what we expected to be the behavior of the system. Although it is not formal, we may think of Fig. 10 as a bifurcation diagram, where in the horizontal axis we have the “bifurcation parameter” \(u\), and in the vertical axis a measure of the oscillations (i.e., the Euclidian norm of the error vector, to be defined later). As previously discussed, \(u_0\) is here the nominal value for \(u\) of an efficient drilling operation. The upper solid line describes a possible family of stable oscillations, whereas the lower dotted line is a family of unstable ones. The lines with arrows describe possible trajectories of the closed-loop system parameterized as a function of \(u\). These trajectories are extrapolated from the \textit{a priori} behavior of the drillstring system.

There are the following two interesting cases to be analyzed.

a) **Nominal behavior:** Assume that \(u = u_0\), and the system trajectories are at equilibrium. Then, if a perturbation arrives:

- either the perturbation is not large enough to take the system trajectories out from their local attraction domain (\(a\) curve in Fig. 10); therefore, the velocity controller succeeds in regulating the trajectories back to their equilibrium, or
- the perturbation is large enough to take the system trajectories out from its equilibrium domain; in this case (\(b\) curves in Fig. 10), the trajectories are attracted by the corresponding stable limit cycle and the system enters into sustained oscillation.

b) **Behavior beyond nominal operations:** To suppress such oscillations, the \(u = WoB\) must be reduced by means of the control signal \(\hat{u}\), until its trajectory reaches the bifurcation point, and the local controller is able to return the system trajectories to the equilibrium. Thereafter, the nominal value of the WoB must be recovered in a proper slow manner, to continue with the drilling task, i.e., \(u \rightarrow u_0\). Significantly enough, the variation of \(\hat{u}\) should be restricted to a valid domain, and, in particular, restricted to a positive values other than zero. Without this restriction, it is clear that drilling may not be efficient, or it will be impractical.

The general structure of the variation law for \(u\) (or equivalent for \(\hat{u}\)), will be here of the form

\[
\dot{\hat{u}} = \mathcal{P}_{\omega_0}^\sigma \{ -\sigma \hat{u} + \Phi(\cdot) \}
\]

where \(\sigma > 0\), can be understood as a time-constant of the controller, and \(\mathcal{P}_{\omega_0}^\sigma\) is a projector operator ensuring that solutions of the previous equation makes \(\hat{u}\) stay in the range \((-\omega_0, 0]\), and \(\Phi(\cdot)\) is a nonlinear function which must be designed to ensure system stability, that is

\[
\hat{\Phi}_R \rightarrow \omega_d \quad \hat{u} \rightarrow 0.
\]

In order to make the presentation simpler, we will drop the explicit use of the projection operation \(\mathcal{P}\) in Section VII. However,
the reader should keep in mind that \(\dot{\tilde{u}} \) is a bounded signal in the prescribed range.

With this in mind, the complete closed-loop equations are

\[
\begin{align*}
\dot{x} &= A_2x + B_2w + H_2y(x_3)(u_0 + \tilde{u}) \\
\dot{\tilde{u}} &= -\sigma \tilde{u} + \Phi(\cdot)
\end{align*}
\]

where matrices \(A_2, B_2, H_2 \) have been defined previously.

B. Error Equations

Error equations can be obtained by applying the change of coordinates \(e = x - x^* \), and considering the steady-state values \(\mu(e^*) = \mu^* \) and \(\tilde{u}_{ss} = 0 \). This yields

\[
\begin{align*}
\dot{e} &= A_2e + H_2[\mu(y)\tilde{u} + \tilde{f}(y)u_0] \\
\dot{\tilde{u}} &= -\sigma \tilde{u} + \Phi(y) \\
y &= Ce = e^*
\end{align*}
\]

where the term \(\tilde{f}(y) \) is defined as follows:

\[
\tilde{f}(y) = \mu(y) - \mu^*
\]

and we assume that the update rule for \(\tilde{u} \) is designed on the basis of the output \(y \). The error system can be described by the block diagram in Fig. 11, with the following definitions:

\[
G(s) : \Psi \mapsto y \\
\Gamma : y \mapsto \tilde{u} = \mu(y)\tilde{u} \\
\Delta : \tilde{y} \mapsto \tilde{y}_2 = \tilde{f}(y)u_0
\]

where \(\Psi = (-\tilde{u}_1 + \tilde{u}_2) \).

C. Error Equation Properties

1) PR Condition on \(G(s) \): The map \(G(s) \) is

\[
G(s) = -C(sI - A_2)H_2
\]

2With an abuse of notation, we will use \(\mu(y) \) to denote the expression of \(\mu(x_3) \), in the shift coordinate \(y + \omega_d \), i.e., \(\mu(x_3) = \mu(y + \omega_d) = \mu(y) \). Note that at \(y = 0 \), we have \(\mu(y = 0) = \mu(\omega_d) = \mu^* \).

with \(C = [0 1 0] \), or equivalently

\[
G(s) = \frac{s(a_2s^2 + a_1s + a_0)}{b_1s^4 + b_2s^3 + b_2s^2 + b_1s + l_0}.
\]

The error equation and updating rule of \(\tilde{u} \) have been designed in such a way that the resulting map \(G(s) \) has relative degree one. This condition is necessary to obtain PR and SPR functions. The verification that \(G(s) \) is PR can be done directly on the triplets of matrices \((A_2, H_2, C) \) as demonstrated in [30] for SPR function. Adapting this result to PR functions and using our notation at hand, results in the following relaxed conditions: consider the transfer function \(G(s) = -C(sI - A_2)H_2 \). \(G(s) \) is PR if and only if: 1) \(A_2H_2 > 0 \); 2) \(A_2 \) is stable; 3) the matrix \(A_2(I - (1/C)A_2H_2)A_2H_2C \) has no eigenvalues on the open negative real axis \((-\infty, 0) \).

The first condition is easy to compute in terms of model parameters. This gives \(A_2H_2 = (c + d_b)/d_b^2 > 0 \), and always holds from the physics of the system. The second condition is also verified since \(A_2 \) is designed to be stable. The last condition is more involved, but it can be easily checked numerically. For typical values of drillstring system model parameters and \(\psi \)-control gains considered in this paper, it is possible to show that condition 3) holds. Note also that by continuity of the eigenvalues with respect to the matrices parameters, there will exists a certain degree of robustness of this condition with respect the model uncertainly.

Consequently, we have that \(G(s) \) is a positive real (PR) function, and hence from the Kalman–Yacubovich–Popov Lemma [16], the following property holds: \(\exists P = PT > 0, Q = LT \geq 0 \) such that

\[
A_2^TP + PA_2 = -Q = -LT \leq 0
\]

\[
PH_2 = -C
\]

Therefore, as a consequence, we have the following two properties for the linear map \(G(s) \):

- \(G(s) \) is a passive relative to \(V(e) = e^TPe \);
- \(G(s) \) has a finite \(L_2 \)-gain: \(\gamma_2(G) = \sup_{\omega} |G(j\omega)| < \infty \).
2) **Boundedness of Signal \(\Psi(t) \):** From the definitions of \(\hat{u}_1 \) and \(\hat{u}_2 \) in (27) and (28), together with the assumption that the adaptation mechanism yields values in the range \(\hat{u} \in (-u_0, 0] \), it follows that both signals, \(\hat{u}_1 \) and \(\hat{u}_2 \), are bounded, that is

\[
\left| \hat{u}_1 \right|_{\infty} = \sup_{t \geq 0} \left| \hat{u}_1 \right| \leq u_0 < \infty \tag{33}
\]

\[
\left| \hat{u}_2 \right|_{\infty} = \sup_{t \geq 0} \left| \hat{u}_2 \right| \leq 2 \cdot u_0 < \infty \tag{34}
\]

Hence \(||\Psi(t)||_{\infty} \leq 3 \cdot u_0 \).

3) **Boundedness of the Output \(y(t) \):** Since \(G(s) : \Psi \mapsto y \) is a lineal stable map, the output signal \(y \) is also bounded, i.e.,

\[
\Psi \in L_{\infty} \Rightarrow y \in L_{\infty} \tag{35}
\]

4) **Sector Condition on \(\Delta \):** With regard to Fig. 11, the output of the map \(\Delta \) can be seen as a disturbance acting on the closed loop system resulting from the operators \(G(s) \) in feedback connection with nonlinear operator \(\Gamma \).

Fig. 12(a) shows the memoryless friction map used for this study. Note that as the steady-state rotatory bit speed (\(\omega_l \)) is in general much larger than the Stribeck velocity \(\omega_s \), we can then assume that \(\mu^s = \mu_C \). Therefore, taking into account that \(y = e_3 = \dot{\phi}_n - \omega_d \), the output of block \(\Delta \) will have the profile shown in Fig. 12(b). This operator belongs to the cone sector \([a, b] \) as displayed in Fig. 12(b) (see [33] for further discussion on sector definitions). Formally, this is stated as follows.

The nonlinear operator \(\Delta(y) \) belongs to the sector \([a, b]\) if the following holds true:

- \(\Delta(0) = 0 \);
- \(a \leq (\Delta(y))/(y) \leq b, \forall y \geq 0 \), or equivalently;
- \(ay^2 \leq y \Delta(y) \leq by^2, \forall y \in \mathbb{R} \).

In our case, the values for \(a \) and \(b \) are

\[
a = -\frac{\mu_s - \mu_C}{\omega_l} u_0 \tag{36}
\]

\[
b = \frac{\mu_s + \mu_C}{\omega_l} u_0 \tag{37}
\]

and consequently, the map \(\Delta \) has also finite \(L_2 \)-gain, which is bounded by

\[
\gamma_2(\Delta) \leq \max[|a|, |b|]. \tag{38}
\]

5) **Block Transformation:** As it can be seen in Fig. 12(b), the map \(\Delta \) is almost passive, since almost the whole diagram is within the first and third quadrants. This characteristic is generic, as the difference between breakaway and Coulomb friction levels is generally small (\(a \) is small when compared to \(b \)).

Fig. 13 shows a possible block transformation, where the following new operators, \(\Delta^* \) and \(\Gamma^* \) are defined

\[
\Delta^* : y \mapsto (\hat{u}_2 + \varepsilon y) \quad \Gamma^* : y \mapsto (\hat{u}_1 - \varepsilon y).
\]

With this transformation, it can be easily proven that the map \(\Delta^* \) is passive if the value of \(\varepsilon \) is taken such that \(\varepsilon = |a| \), as can be seen in Fig. 14

\[
\varepsilon = |a| \Rightarrow \int_0^t y(\hat{u}_2 + \varepsilon y) dt \geq 0, \tag{39}
\]

With this new feedback configuration, the problem of designing a stable update law for \(\hat{u}(t) \) is equivalent to finding a function \(\Phi(y) \), and parameter conditions, such that the transformed operator \(\Gamma^* \) defines a passive map. This design strategy results from well known properties of feedback interconnected passive systems.

Section uses such a result to demonstrate the stability properties of one possible candidate update rule.

D. D-OSKIL Updating Law

Under the premise that the complete form of the update law should also include a suited projection operator ensuring that the variation of \(\hat{u} \) is limited to the admissible parameters range, the following updating rule will be analyzed.

Let us consider the nonlinear function \(\Phi(y) \)

\[
\Phi(y) = \lambda y \text{sgn}(\mu(y)) \quad \lambda \geq 0. \tag{40}
\]

Note that this choice is conditioned by the ability of computing the sign of \(\mu(y) \). Considering the form of the friction
model for this study, the sign of $\mu(y) = \mu(\dot{\theta}_N - \omega_d)$, can be computed if $\dot{\theta}_N$ can be measured, or at least, observed as shown in simulations later on. We proceed according to this hypothesis in what follows.

E. Stability Analysis

Lemma 1: Let $\rho \geq 0$ be an arbitrarily positive constant, and λ_v, σ be such that the following design inequality holds:

$$\frac{\lambda}{\sigma} \geq \left(\frac{\mu_S}{\mu_C} - 1 \right) \frac{u_0}{\omega_d} + \frac{\sigma}{\mu_C} \rho$$

(41)

where $(\mu_S)/(\mu_C) \geq 1$. Then map $\Gamma^* : y \mapsto (\mu(y)\ddot{u} - \varepsilon y)$ is strictly input passive, i.e.,

$$I = \int_0^t (\mu(y)\ddot{u} - \varepsilon y) y \geq \rho \int_0^t y^2 - \beta_0$$

(42)

with $\beta_0 = (y_{\text{max}})/(\sigma)2 u_0 > 0$.

Proof: Let I define the integral of the input–output product of the operator Γ^*, i.e.,

$$I = \int_0^t (\mu(y)\ddot{u} - \varepsilon y) y = \int_0^t \mu(y)\ddot{u} y - \int_0^t \varepsilon y^2.$$

Substituting \ddot{u} from (23) in the previous expression gives

$$I = \frac{1}{\sigma} \int_0^t \mu(y)\Phi(y) - \frac{1}{\sigma} \int_0^t \mu(y)\ddot{u} - \int_0^t \varepsilon y^2.$$

From Section VII-C2 and VII-C3, signals y and $\mu(y)$ have been shown to be bounded. Let note these bounds as $|y| < y_{\text{max}}$, $|\mu(y)| < 1$. Therefore

$$I \geq \frac{1}{\sigma} \int_0^t \mu(y)\Phi(y) - \frac{1}{\sigma} \int_0^t \varepsilon y^2 - \frac{y_{\text{max}}}{\sigma} \left| \int_0^t \ddot{u} \right|.$$

Taking now $\Phi(y) = \lambda y \text{sgn}(\mu(y))$, gives

$$I \geq \frac{1}{\sigma} \int_0^t \left(\frac{\lambda}{\sigma} |\mu(y)| - \varepsilon \right) y^2 - \frac{y_{\text{max}}}{\sigma} |\ddot{u}(t) - \ddot{u}(0)|$$

$$\geq \frac{1}{\sigma} \int_0^t \left(\frac{\lambda}{\sigma} |\mu(y)| - \varepsilon \right) y^2 - \frac{y_{\text{max}}}{\sigma} 2 u_0$$

$$\geq \frac{1}{\sigma} \int_0^t \left(\frac{\lambda}{\sigma} \mu_C - |\lambda| \right) y^2 - \beta_0$$

where the last inequality is obtained by using the lower bound on $|\mu(y)|$, i.e., $|\mu(y)| \geq \mu_C$, the definition of $\varepsilon = |\varepsilon|$ with ε as given in (36) and the constant $\beta_0 = (y_{\text{max}})/(\sigma)2 u_0$. Finally, introducing the condition (41) in the previous expression, gives the following lower bound on I:

$$I \geq \int_0^t \left(\frac{\lambda}{\sigma} \mu_C - |\lambda| \right) y^2 - \beta_0 \geq \rho \int_0^t y^2 - \beta_0$$

which proves the lemma.

Remark 1: The condition (41) exhibits several interesting practical features. It relates the design parameters (σ, λ) as a function of physical drillstring system characteristics such as the nominal WoB (u_0), the rock friction features $(\mu_S - \mu_C)$, and the desired rotational velocity (ω_d). The parameter ρ as shown later, provides a measure of the convergence rate of the output y to zero.

We are now in a position to establish the main stability result.

Theorem 7.1: Consider the closed-loop system of Fig. 13 with $G(s)$, Γ^*, Δ^\rightarrow holding the following properties:

1) $G(s)$ is a PR operator satisfying (31) and (32);
2) Δ^\rightarrow is a passive map satisfying (39);
3) Γ^* is a strictly input passive map satisfying (42), i.e., design parameters are such that the condition (41) holds.

Then, $(e^*, \ddot{u}^*) = (0, 0)$ is a globally asymptotically stable equilibrium of the considered closed-loop system.

Proof: Let us take the following scalar function:

$$V(e, \ddot{u}) = \frac{1}{2} e^T Pe + \int_0^t y(\ddot{u} + \varepsilon y) + \left[I(\ddot{u}, y) + \beta_0 - \rho \int_0^t y^2 \right].$$

(43)

From (39) and (42), we have that $V(e, \ddot{u})$ is semi-positive definite.

Computing the time-derivative of $V(e, \ddot{u})$ using the properties 1)–3) of the theorem, results in

$$\dot{V}(e, \ddot{u}) = -\frac{1}{2} e^T L^T L e - \rho y^2 \leq 0 \quad \forall e, \ddot{u}.$$

(44)

Therefore, from (44), we have that $y \to 0$ with a rate depending on the value of ρ. The rest of the proof follows from the application of the LaSalle’s invariance principle. From (23), we can see that if $y \to 0$, together with the fact that σ is a positive constant and $\Phi(0) = 0$, gives that $\ddot{u} \to 0$. Finally, this implies that the two last terms in (22) also tends to zero, i.e.,

$$\lim_{t \to \infty} [\mu(y)\ddot{u} + \ddot{\rho}(y)u_0] = [\mu(0)0 + \ddot{\rho}(0)u_0] = 0$$

since $\mu(0) = \mu_C$ and $\ddot{\rho}(0) = \mu(0) - \mu^* = \mu^* - \mu^* = 0$.

Therefore, this results in

$$\dot{e} = A_\delta e + H_{e\delta} \lim_{t \to \infty} [e] = A_\delta e.$$

(45)

So it can be concluded that $e \to 0$, and hence that $e^* = 0$, and $\ddot{u}^* = 0$ are a globally asymptotically stable equilibria.

VIII. Simulation Example

In order to demonstrate the behavior of the proposed adaptive law, simulations of the drillstring system controlled under the D-OSKIL mechanism designed in Section VII-D are shown in Figs. 15 and 16. The values for system model parameters used in the simulations are presented in Table I. In Figs. 15 and 16, the typical profiles in terms on rotatory velocity, both in surface and downhole, and system WoB are shown.

As it can be observed, with the nominal weight $u_0 = 40000$ N, the system is under a sustained oscillation regime. The D-OSKIL mechanism is activated at $t = 50$ s, and in both cases, the controller is able to extinguish such oscillations, although the WoB profiles obtained are quite different.

3The numerical values of the drilling system parameters according to a 2000-m-long drillstring have been taken from [29].
and is a constant; \(\lambda \) is strictly stable; and \(\mu \) is detectable; \(y_o \) is the measured output.

1) time-varying vector, but also provide an estimate of the friction such that the transition from oscillation regime to stabilization time for the value of WoB is also faster in Fig. 16, but in this case some oscillations occur during the transition.

This issue is due to the \(\lambda \) value, when large values of the \(\lambda \) are chosen a sharp WoB value transition is obtained in the switching instant of time (in our simulations \(t = 50 \) s).

From a practical point of view, and in order to avoid oscillations in the control signal, the parameter values proposed in Fig. 15 seem to be more appropriate.

In Fig. 16 (with control parameters \(\lambda = 2.500 \) and \(\sigma = 0.3 \), the D-OSKIL mechanism is able to extinguish the oscillations with a soft evolution in the \(W_{db} \) control signal.

On the other hand, in Fig. 16 (with control parameters \(\lambda = 2.500 \) and \(\sigma = 1.0 \), the transition from oscillation regime to stabilization period is faster than the one obtained in Fig. 15. The stabilization time for the value of WoB is also faster in Fig. 16, but in this case some oscillations occur during the transition.

This issue is due to the \(\lambda \) value, when large values of the \(\lambda \) are chosen a sharp WoB value transition is obtained in the switching instant of time (in our simulations \(t = 50 \) s).

From a practical point of view, and in order to avoid oscillations in the control signal, the parameter values proposed in Fig. 15 seem to be more appropriate.

In this section, we present some extensions of the previous control which has been studied and designed under the hypothesis of the measure of the bit rotational velocity \(\dot{\varphi}_b \). In this section, we first provide an alternative way to get this measure through a state observer.

A. Observer Design

The observer is designed on the basis of open-loop (8). That is on

\[
\dot{x} = Ax + Bv + (Hu) \cdot \mu
\]

\[
y_o = C_o x = \dot{\varphi}_b. \tag{46}
\]

Following [35], we propose to use the following observer based on the observation of the rotary angular velocity \(y_o = \dot{\varphi}_b \):

\[
\dot{x} = Ax + Bv + (Hu) \cdot \mu + \left[K_o + \beta T T^T C_o^T \right] (y_o - C_o \dot{x}) \tag{47}
\]

\[
\dot{\mu} = \beta T T^T C_o^T (y_o - C_o \dot{x}) \tag{48}
\]

\[
\Gamma = \left[A - K_o C_o \right] \Gamma + (Hu) \tag{49}
\]

where \(\Gamma \) is a \((3 \times 1)\) time-varying vector, \(\beta > 0 \) is a positive scalar, \(\dot{x} \), and \(\mu \) are the state and friction coefficient estimates, respectively, \(y_o \) is the measured output, \(K_o \) is a \((3 \times 1)\) observer vector gain, and \(C_o = [0, 1, 0] \). Note that \(C_o \neq C \).

The observer not only provides an estimate for the bit rotational velocity \(\dot{\varphi}_b \), but also provide an estimate of the friction coefficient \(\dot{\mu} \) which can be useful for other monitoring purposes.

The observer, as indicated in [35], results in a globally exponentially stable observer providing the following hypothesis hold:

- \(\mu \) is constant;
- exists a matrix \(K_o \) such that \((A - K_o C_o)\) is strictly stable matrix, i.e., the constant pair \((A, C_o)\) is detectable;
- \(u(t) \) is persistently exciting, i.e., \(\exists \delta > 0 \) such that the following inequality is satisfied:

\[
\int_{t}^{t+T} \Gamma(\tau) T T^T C_o^T C_o \Gamma(\tau) d\tau > \delta > 0.
\]

IX. OBSERVER-BASED DESIGN

TABLE I

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(J_e)</td>
<td>2122</td>
<td>[Kg.m²]</td>
</tr>
<tr>
<td>(J_b)</td>
<td>374</td>
<td>[Kg.m²]</td>
</tr>
<tr>
<td>(k)</td>
<td>473</td>
<td>[Nm/rad]</td>
</tr>
<tr>
<td>(c)</td>
<td>23.2</td>
<td>[1/s²]</td>
</tr>
<tr>
<td>(d_t)</td>
<td>425</td>
<td>[1/s]</td>
</tr>
<tr>
<td>(d_b)</td>
<td>50</td>
<td>[1/s]</td>
</tr>
<tr>
<td>(\mu_C)</td>
<td>0.3</td>
<td>[-]</td>
</tr>
<tr>
<td>(\mu_S)</td>
<td>0.35</td>
<td>[-]</td>
</tr>
<tr>
<td>(v_o)</td>
<td>0.01</td>
<td>[rad/s]</td>
</tr>
<tr>
<td>(a_0)</td>
<td>40000</td>
<td>[Kg.m/s²]</td>
</tr>
<tr>
<td>(\omega_d)</td>
<td>5</td>
<td>[rad/s]</td>
</tr>
<tr>
<td>(k_1)</td>
<td>15725</td>
<td>[Nm/rad/s]</td>
</tr>
<tr>
<td>(k_2)</td>
<td>30576</td>
<td>[Nm/rad]</td>
</tr>
<tr>
<td>(k_3)</td>
<td>194</td>
<td>[Nm/rad/s]</td>
</tr>
</tbody>
</table>

Fig. 15. Simulation of D-OSKIL scheme with \(\sigma = 0.3 \) and \(\lambda = 2.000 \).

Fig. 16. Simulation of D-OSKIL scheme with \(\sigma = 1.0 \) and \(\lambda = 2.500 \).
Let comment the practical implication of the previous hypothesis.

The first hypothesis assumes that the friction coefficient is constant, or eventually slow-time variant \(\dot{\mu} \approx 0 \). Note that this approximation is often assumed in the context of observer design with unknown inputs, but also in the context of adaptive control. Here this hypothesis means that the rate of variation of the rock friction coefficient does not exhibit substantial changes during the drill-operation. Even if the drilled surfaces may have different friction characteristics, the rate of penetration (drilling-speed) remains small.

The second hypothesis correspond to the necessity observation property need to build the observer. By inspecting this condition, we can see that the system observability is invariant with respect the matric \(A \) and \(C_o \).

Finally, the last property is necessary to the observer to converge. Note that as the “adaptation” is done under a single parameter \(\mu \), the required condition is weak and will be simple to fulfill. To see this note that the pair \((A - K_o C_o, H)\) is controllable and the pair \((A - K_o C_o, C_o)\) is observable, then the persistently exciting condition is easily verified if the Wob force is not equal to zero, i.e., \(u(t) > 0 \). A detailed justification of this can be found in [11].

B. Simulation With the Observer-Based Controller

The original controller has the form

\[
\dot{u} = -\sigma \dot{x} + \lambda (x_3 - \omega_d) \cdot \text{sgn}(\mu(x_3 - \omega_d))
\]

(50)

replacing \(x_3 \) by its estimate \(\hat{x}_3 \), and noting that \(\text{sgn}(\mu(x_3 - \omega_d)) \equiv \text{sgn}(x_3 - \omega_d) \), we get the final, quite simple, control law structure to be implemented together with the observer

\[
\dot{u} = -\sigma \dot{u} + \lambda \hat{x}_3 - \omega_d
\]

(51)

In Fig. 17, we repeat the experiment shown previously in Fig. 15 (with the parameters given in Table 1) with the observer-based control law instead. The additional parameter for the observer used in this simulation where: \(\beta = 0.05 \) and \(K_o = -[26.8128; 4.5928] \). As Fig. 17 shows, the D-OSKIL mechanism works well in this case. The behavior obtained in Figs. 15 and 17 are similar. It can be observed in the stabilization of the rotary velocity as in the evolution of the control signal. Note that the observer can tolerate a certain amount of uncertainty on the knowledge of the physical parameters as demonstrated by Zhang in [35]. Fig. 17 at the bottom shows the comparison between the downhole and the signal provided by the observer. As can be seen, the response of the observer converges very well to the downhole signal.

X. CONCLUSION

We have proposed using the weight on the bit (Wob) force as an additional control variable to extinguish limit cycles when they occur. An adaptation law, named D-OSKIL, of the oscillation killer (OSKIL) mechanism, to oil well drillstring systems has been proposed. An approximate analysis based on the bias describing function did provide a good insight of the slip-stick behavior and in the control design.

We have then presented a stability analysis of a variant of the D-OSKIL control mechanism, introduced in [7], to remove stick-slip oscillations in drillstring systems. The presented stability analysis based on passivity has shown that this algorithm is globally asymptotically stable. Simulations applying such an algorithm showed that stick-slip oscillations can be effectively eliminated.

The implementation of the proposed control algorithm requires the sign of a friction torque on the bit \(\mu(y) \), which can be computed if the sign of rotational velocity measured at the bit is known. Therefore, the measurement of this velocity is necessary, but this limitation can be undertaken by the proper design of an observer.

APPENDIX A

TUNING METHOD FOR CONTROLLER GAINS

From the system model (1) and (2), and defining a new variable \(z \) and constant \(\epsilon \) in the way

\[
z = k(\varphi_r - \varphi_b)
\]

\[
\epsilon^2 = 1/k
\]

the \(\varphi_r \) and \(z \) dynamics are

\[
v = J_r \dot{\varphi_r} + \alpha \epsilon^2 \dot{z} + z + d_r \dot{\varphi_r}
\]

\[
\epsilon^2 \ddot{z} = \frac{2}{J_{eq1}} - \epsilon^2 \left(\frac{c}{J_{eq1} + \frac{d_b}{J_b}} + \frac{d_b}{J_b} - \frac{d_r}{J_r} \right) \dot{\varphi_r}
\]

\[
+ \frac{v}{J_r} \text{Tob} \frac{J_r}{J_b}
\]

(52)
Since the torsional stiffness k is usually very large, the assumption $\epsilon = 0$ can be made, and so

$$J_r\ddot{\varphi}_r + z + d_r\dot{\varphi}_r = v_s \tag{54}$$

$$0 = -\frac{z}{J_{eq}} + \left(\frac{db}{J_b} - \frac{d_r}{J_r}\right)\ddot{\varphi}_r + \frac{v_s}{J_r} + \frac{ToB}{J_b} \tag{55}$$

where the control signal is supposed to be split in slow (v_s) and fast (v_f) modes

$$v = v_s + \epsilon v_f.$$

Therefore, solving (55)

$$z = J_{eq}\left[\left(\frac{db}{J_b} - \frac{d_r}{J_r}\right)\ddot{\varphi}_r + \frac{v_s}{J_r} + \frac{ToB}{J_b}\right] \tag{56}$$

and so, (54) results in

$$\ddot{\varphi}_r + \left(\frac{db}{J_r + J_b}\right)\dot{\varphi}_r = \frac{1}{J_r + J_b}v_s - \frac{1}{J_r + J_b}ToB. \tag{57}$$

By supposing $v_s = (k_1 + (k_2)/(s))(\omega_d - \dot{\varphi}_r)$, and defining a new variable

$$\dot{\varphi}_r = \omega_d - \dot{\varphi}_r \Rightarrow \ddot{\varphi}_r = \frac{\omega_d}{s} - \dot{\varphi}_r, \dddot{\varphi}_r = -\ddot{\varphi}_r.$$

We have (supposing $(db + d_r) \ll (J_r + J_b)$)

$$\ddot{\varphi}_r + \left(\frac{k_1}{J_r + J_b}\right)\dot{\varphi}_r + \left(\frac{k_2}{J_r + J_b}\right)\dot{\varphi}_r = \frac{ToB}{J_r + J_b}. \tag{58}$$

So, by imposing some damping (δ_r) and natural frequency (ω_n) in the closed-loop dynamics $ToB \leftrightarrow \dot{\varphi}_r$, the values of k_1 and k_2 can be computed from

$$k_1 = (J_b + J_r)\left[2\delta_r\omega_n - \frac{db + d_r}{J_b + J_r}\right] \tag{59}$$

$$k_2 = (J_b + J_r)\omega_n^2. \tag{60}$$

On the other hand, by substituting the controller structure in (53), the following expression is obtained:

$$\epsilon^2\dddot{z} = \frac{z}{J_{eq}} - \epsilon^2\left(\frac{c}{J_{eq}} + \frac{db}{J_b}\right)\dddot{z} + \left(\frac{db}{J_b} - \frac{d_r}{J_r}\right)\dddot{\varphi}_r + \frac{v_s}{J_r} + \frac{\epsilon}{J_r}v_f + \frac{ToB}{J_b}. \tag{61}$$

Due to two-time scales separation, it can be assumed that the slow variable has reached its steady state value respecting to the variations of the fast variable z, and so, rewriting (61) as

$$\epsilon^2\dddot{z} = \frac{z}{J_{eq}} - \epsilon^2\left(\frac{c}{J_{eq}} + \frac{db}{J_b}\right)\dddot{z} + \frac{\epsilon}{J_r}v_f + \frac{ToB}{J_b} + \rho(\varphi^*_r, \varphi^*_r) \tag{62}$$

where the superscript * means steady-state value, and

$$\rho(\varphi^*_r, \varphi^*_r) = \left(\frac{db}{J_b} - \frac{d_r}{J_r}\right)\varphi^*_r + \frac{v_s(\varphi^*_r, \varphi^*_r)}{J_r} = \frac{z^*}{J_{eq}} - \frac{ToB}{J_b}. \tag{63}$$

By rewriting (62) in fast error coordinates $\zeta = z - z^*$, we have

$$\dddot{\zeta} + \left(\frac{c}{J_{eq}} + \frac{db}{J_b}\right)\dddot{\zeta} + \frac{1}{\epsilon^2J_{eq}}\zeta = \frac{1}{J_r}\epsilon v_f. \tag{64}$$

Taking $v_f = -k_3\dot{\zeta}$,

$$\dddot{\zeta} + \left(\frac{c}{J_{eq}} + \frac{db}{J_b} + \frac{k_3}{J_r\epsilon}\right)\dddot{\zeta} + \frac{1}{\epsilon^2J_{eq}}\zeta = 0 \tag{65}$$

and so, imposing certain damping value for torsion dynamics (δ_{tor}), the value of k_3 can be computed

$$k_3 = \frac{J_r}{\sqrt{k}} \cdot \left[2\delta_{tor}\sqrt{k}J_{eq} - \frac{c}{J_{eq}} - \frac{db}{J_b}\right]. \tag{66}$$

APPENDIX B

COMPUTATION OF THE FUNCTIONS N_0 AND N_1

A plot for the functions N_0 and N_1 is shown in Fig. 18

$$N_0(A_0, y_0) = \frac{1}{2\pi A_0} \int x(t) d\theta \tag{67}$$

$$N_1(A_0, y_0) = \frac{1}{\pi A_0} \int x(t)\cos(\theta) d\theta \tag{68}$$

$$N_0(A_0, y_0) = \frac{2F_s y_0}{\pi A_0} \left(\frac{y_0}{A_0} - \frac{A_0}{2y_0}\right) - \frac{A_0(F_s - F_c)}{2y_0} \tag{69}$$

$$N_1(A_0, y_0) = \frac{4F_s}{\pi A_0} D_1 \left(\frac{y_0}{A_0} - \frac{F_s - F_c}{2y_0}\right) \tag{70}$$

with

$$g(x) = \begin{cases} \arcsin(x) & |x| \leq 1 \\ \frac{x}{2} & x > 1 \end{cases} \tag{71}$$

$$f_0(x) = \begin{cases} \frac{2}{\pi}(x\arcsin(x) + \sqrt{1-x^2}) & |x| \leq 1 \\ |x| & |x| > 1 \end{cases} \tag{72}$$

$$f_1(x) = \begin{cases} \frac{2}{\pi}(x\arcsin(x) + x\sqrt{1-x^2}) & |x| \leq 1 \\ -1 & x < -1 \end{cases} \tag{73}$$

$$D_1(x) = \begin{cases} \sqrt{1-x^2} & |x| \leq 1 \\ 0 & |x| > 1 \end{cases} \tag{74}$$
REFERENCES

Carlos Canudas-de-Wit received the B.Sc. degree in electronics and communications from the Technological Institute of Monterrey, Monterrey, Mexico, in 1980, and the M.Sc. and Ph.D. degrees in automatic control from the Polytechnic of Grenoble, Grenoble, France, in 1984 and 1987, respectively. In 1985, he was a Visiting Researcher with Lund Institute of Technology, Lund, Sweden. Since then he has been working at the same department as Director of Research with the National Center for Scientific Research (CNRS), where he teaches and conducts research in the area of nonlinear control of mechanical systems and networked controlled system. He is leader of the NeCSt joint CNRS-INRIA Team-Project on networked controlled systems. His research interests include networked controlled systems, vehicle control, adaptive control, identification, control of robots, and systems with friction. His research publications includes more than 120 conference papers and more than 47 published papers in international journals. He was an Associate Editor for the IEEE TRANSACTIONS ON AUTOMATIC CONTROL (1992–1997) and for Automatica (1999–2002).

Francisco R. Rubio received the Industrial Electrical Engineering degree and Doctorate from the Escuela Técnica Superior de Ingenieros Industriales de Sevilla, Seville, Spain, in 1981 and 1985, respectively.

He is a Professor with the Department of Systems Engineering and Automatic Control, University of Seville. He has worked on various research and development projects in cooperation with industry. His current research interests include the areas of networked controlled systems, adaptive control, robust process control, nonlinear control systems and robotics. He has written two books, Advanced Control of Solar Plants (Springer-Verlag, 1997) and Control Adaptativo y Robusto (Seville University, 1996). He has authored and coauthored more than 150 technical papers published in international journals and conference proceedings.

Dr. Rubio was a recipient of the CITHEMA Award for the best work on automation by a young engineer in 1980.

Miguel A. Corchero was born in Sanlucar la Mayor, Seville, Spain, in 1979. He received the B.S. degree in telecommunications engineering and the M.S. degree in automatics and robotics from the University of Seville, Seville, Spain, in 2003 and 2005, respectively.

In 2005, he was a visiting student in the CNRS-LAG, Grenoble, France. Since 2006, he has been a Project Manager in the private industry. His research interests include nonlinear control applied to mechanical systems, mainly dynamic suppression of undesired oscillations in drilling systems.